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ABSTRACT
Traffic migration is a common procedure performed by opera-
tors during planned maintenance and unexpected incidents to
prevent/reduce service disruptions. However, current practices of
traffic migration often couple operators’ intentions (e.g. device up-
grades) with network setups (e.g. load-balancers), resulting in poor
re-usability and substantial operational complexities. Our study of
205Methods of Procedure (MOPs) from amajor U.S. carrier suggests
that generalizing traffic migration with a unified model is feasible.
Such generalization along with SDN’s automation capability is key
to scalable and flexible management of traffic, especially for virtu-
alized network functions with unprecedented scale, heterogeneity,
and fast iteration. In this paper, we propose Egret, a generic traffic
migration system that simplifies traffic management for physical
and virtual network functions. Egret (1) hides intricate implementa-
tion details from operators with generic intention-based interfaces,
and (2) modularizes common traffic migration procedures to en-
able plug-and-play by developers and vendors. Leveraging a novel
mask-based abstraction of traffic migration jobs, Egret can further
simplify reverse traffic migration and enable job interleaving.
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1 INTRODUCTION
Despite the advancement and growing adoption of Software De-
fined Networks (SDN), it remains challenging to perform traffic
migration on a heterogeneous data plane, because different types of
network functions have (or depend on) drastically different traffic
steering capabilities/methods. For example, a router can easily drain
its traffic by increasing OSPF weights of its links, but it is incapable
of controlling what flows to drain or specifying destinations for the
drained traffic; in contrast, a firewall often has to rely on external
functions like load balancers or switches to steer traffic which do
support more fine-grained controls.

These differences lead to highly customized solutions that tailor
to specific applications (e.g. disaster mitigation [30]) and/or net-
work setups (e.g. load-balancers and programmable switches). Be
they traditional Methods of Procedure (MOPs) or systematic ap-
proaches [12, 21, 30], specialized solutions often require excessive
knowledge of the infrastructure to develop and use (e.g. topology,
device type). As network function virtualization becomes more
prominent and network data plane more heterogeneous and dy-
namic, developing and using specialized solutions will inevitably
become unsustainable and costly due to their poor reusability across
applications and network functions.

We believe generalization is key to fundamentally addressing this
problem because a unified and extensiblemodel will greatly simplify
(1) development of solutions by vendors (extension over customiza-
tion) and (2) execution of solutions by operators (standardized inter-
faces over proprietary interfaces). To this end, we conduct a study
on 205 change management MOPs (§2.1) from a major U.S. carrier
to identify the commonalities and differences in traffic migration
for different network functions in different scenarios. We find that:

(1) Four key parameters, Target, Peer(s), Weight(s) and Filter(s)
are sufficient to describe any traffic migration intentions. Target,
around which traffic migration is performed, is the only required
parameter (§2.3). (2) All traffic migration methods can be catego-
rized as either local or remote. Local traffic migration takes place
on the Target (e.g. a router steers traffic through OSPF weight ad-
justment), whereas remote traffic migration takes place on external
network components such as load-balancers, DNS servers and pro-
grammable switches, which we refer to as Anchor Points (§2.4). (3)
Major sources of complexities of traffic migration come from mi-
gration method & anchor point discovery, target & anchor point
configuration, reverse traffic migration and parallel job coordina-
tion (§2.5).

https://doi.org/10.1145/3359989.3365409
https://doi.org/10.1145/3359989.3365409
https://doi.org/10.1145/3359989.3365409
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Based on these findings, we design Egret, a generic traffic migra-
tion system that simplifies trafficmanagement for different network
functions. Egret decouples specification of traffic migration inten-
tions from intrinsic configuration details with its generic interfaces.
It modularizes common stages of traffic migration workflows to
enable vendors to plug-and-play. To further reduce the complexity
of managing states of traffic migrations, Egret uses a mask-based
abstraction to efficiently keep track of individual jobs to simplify
reverse traffic migration and parallelizing jobs.

To summarize, we make the following contributions:
• We conduct the first comprehensive study of trafficmigration
as a general procedure through extensive analysis of 205
change management MOPs from a major U.S. carrier. We
identify common patterns, stages and key parameters that
help define a unified model of traffic migration. We also
shed light on major sources of complexities in existing traffic
migration practices.

• We propose the design of Egret, a traffic migration system
that simplifies trafficmanagement for different network func-
tions for both operators and vendors through generalization,
automation, and modularization.

• Weprototype Egret using Berkeley Extensible Software Switch
(BESS) and show that it supports existing Methods of Proce-
dure while significantly simplifying traffic migration.

This paper is organized as follows: We present results and find-
ings of our study on 205 change management MOPs in §2. Based on
the findings, we propose the design of Egret in §3. We describe our
prototype of Egret, demonstrate its capability through simulation
and quantify its complexity reduction in §4.

2 MOP ANALYSIS
To better understand how different types of network functions
perform traffic migration in practice, we perform an extensive
analysis of 205 change management Methods of Procedure (MOPs)
from a major U.S. carrier.

In this section, we first give an overview of the MOPs (§2.1), then
we select three representative examples of those MOPs (§2.2) to
help illustrate our findings (§2.3,§2.4,§2.5).

2.1 Method of Procedure
Methods of Procedure (MOPs) are manuals/documents that pro-
vide step-by-step instructions on how to perform an operation.
Our study focuses on change management MOPs that describe the
process of imposing changes such as software upgrades to specific
network components. This process usually contains locking, health
checks1, state/configuration preservation, traffic migration, change
deployment, reverse traffic migration, state/configuration restora-
tion, and unlocking. In this work, we focus on the traffic migration
procedure of these MOPs.

2.2 Representative MOP Examples
Next, we will show snippets (with omissions and translated into
plain language) of 3 representative examples from the 205 MOPs.

1Health checks are performed after each step.

2.2.1 PE Router Software Upgrade.

(1) Increase the OSPF weights on the PE2 router to 65535
(2) Verify that traffic is drained
(3) Shutdown BGP sessions to CE routers
(4) Upgrade the drained PE router
(5) Reset the OSPF weights on the PE router
(6) Re-establish BGP sessions with CE routers
The above example shows how the operator drains traffic off a PE

router before performing device upgrade, and “brings back" traffic
after the change. This MOP is a perfect example of howminimal the
input can be for a traffic migration job. Since 65535 is the maximum
and default OSPF weight for drains, and software upgrade requires
all links be drained, what operators need to provide as input for
this traffic migration job is simply which PE router.

Note that in this example, to “bring back” traffic after the upgrade
by resetting the OSPF weights, the operator needs to record the
original OSPF weights. Additionally, this pattern of two opposite
traffic migrations before and after a change is deployed is very
common among the MOPs in our study. We will talk more about
that in §2.5.

Observations. 1. The input of a traffic migration job can be
as minimal as the identifier of the target. 2. It is common to
perform two opposite traffic migrations during an operation,
which usually requires the operator to maintain certain state
variables throughout the process.

2.2.2 MME Software Upgrade.

(1) Reduce “RelativeMmeCapacity” of the target MME3 to
0 so that incoming new connections will be redirected to
other MMEs in the pool

(2) Verify that number of connected UEs is below threshold
(3) Move connected UEs to other MMEs in the pool
(4) Delete static routes towards the isolated MME
(5) Upgrade the isolated MME
(6) Reset “RelativeMmeCapacity” to its original value
(7) Reinstall the static routes towards the target MME
In the above example, the operator needs to isolate an MME

from its pool before the upgrade, then insert the MME back into
its pool. Unlike routers, MMEs are stateful — the operator needs
to migrate existing and redirect new traffic in order to isolate the
MME from its pool.

The approach to preventing new connections on an MME is
conceptually similar to that of a PE router: one lowers the capacity
while the other raises the weight, both leading to a lower prefer-
ability. However, to migrate existing traffic, the operator has to (1)
query the number of connected UEs on the MME and (2) explicitly
move these UEs to other MMEs.

Observations. 3. Stateful network functions require two sep-
arate migrations for both new and existing traffic. 4. Existing
and new traffic are never distributed differently in any of the
MOPs, and they are usually evenly distributed among peers.

2Provider-Edge
3Mobility Management Entity, an LTE control-plane function
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Table 1: Key Traffic Migration Parameters

Parameter Usage Required? Percentage
Target The network entity around which traffic migration is performed. Yes 100%
Peer(s) Network entities that receive or send traffic from or to the Target. No 23%
Weight(s) In each migration, the distribution of traffic among the receiving entities No 22%
Filter(s) Identifiers for any subset of the migrating traffic (e.g. bit-masks) No 1%

2.2.3 Network Zone Traffic Migration through DNS Redirection.

(1) Edit a list of DNS files on DNS server “alnapnrdns01” to
move traffic of Phone, Broadband, VoLTE, etc. to ALN4 NZ51,
NZ3, NZ4, NZ5 and NZ6

(2) Edit a list of DNS files on DNS server “alnapnrdns01” to
move primary roaming traffic to ALN NZ3, NZ4

In this example, the operator draining an entire network zone
2 by migrating traffic of specific services to other network zones
via DNS redirection. This MOP differs from the previous two in
that operators are using DNS servers to steer traffic as opposed to
directly reconfiguring target entities. Besides, for this operation,
the operator is very specific about where each service traffic should
go; the destinations of different service traffic cannot be inferred.

Observations. 5. Network function is not the only type of
target for a traffic migration job.
6. Traffic migration can happen on a more fine-grained level
which involves a subset of the traffic of the target.

2.3 Key Parameters
We see from previous examples how simple traffic migration inten-
tions get obscured by the detailed mechanics of specific procedures
that vary drastically across network functions (NFs). To decouple
the expression of intention and the actual execution details, we
need to find a set of well-defined parameters that are generic yet
carry enough information for specifics to be derived. Based on our
analysis of the 205 MOPs, we identify four key parameters that
satisfy this requirement, as shown in Table 1. To simply show their
usage, here are how the three examples from §2.2 can be described
using one or more of these parameters:

Traffic Migration for PE Router Software Upgrade.

(1) Drain the traffic off {Target=“Router-1”}
(2) Bring back the traffic to {Target=“Router-1”}

Traffic Migration for MME Software Upgrade.

(1) Send traffic of {Target=“MME-1”} to
{Peers=[“MME-2”, “MME-3”, ..., “MME-11”]} with
{Weights=[10%, 10%, ..., 10%]

(2) Bring back the traffic to {Target=“MME-1”}

Network Zone TrafficMigration through DNS Redirection.

(1) Send traffic from {Target=“NZ2”}
matching {Filters=[“Phone”,“Broadband”,“VoLTE”]} to
{Peers=[“NZ1”,“NZ3”,“NZ4”,“NZ5”,“NZ6”]}

4Acronym of a location
5Network zone

(2) Send traffic from {Target=“NZ2”}
matching {Filters=[“Roaming”]} to
{Peers=[“NZ3”,“NZ4”]}

2.4 Local and Remote Traffic Migrations
In previous examples, we can see that in some cases the operator
performs traffic migration by directly reconfiguring the target;
while in others, the operator uses an external component like a
DNS server. We categorize these two methods as local and remote
migrations, and call the external component an Anchor Point. The
difference between local and remote traffic migrations is whether it
takes place on the Target or on Anchor Points.

2.5 Traffic Migration Complexities
As mentioned earlier, existing practices of traffic migration often
couple operator’s intention with network setups, which lead to com-
plexities in the forms of additional information to acquire/maintain
before/during each operation. In this section, we highlight these
complexities identified in the MOP analysis.

Migration Method & Anchor Point Discovery For each traf-
fic migration, operators need to determine what migration method
the Target uses and identify the type and location of Anchor Points
(if needed) based on their network setup (Figure 2).

Target or Anchor Point Configuration For both local and
remote migrations, the diversity of Targets and Anchor Points trans-
lates unfortunately well to the diversity of their capabilities and how
they are configured. Targets are not necessarily network functions,
and stateful Targets incur additional procedures.

Reverse Traffic Migration As mentioned earlier, operators
need to maintain state variables for reverse traffic migrations. Such
externally maintained states not only incur additional operational
complexities, but they also leave operators susceptible to run-time
failures.

Parallel Job Coordination Our MOPs suggest that operators
always perform operations sequentially even when there are multi-
ple devices in the same pool that need to be upgraded. This results in
maintenance windows spanning hours if not days, which is highly
inefficient. Manually performing parallel operations is error-prone
and complex, especially when the same anchor points are shared.

3 EGRET
From §2.3 we see that a few key parameters suffice to describe traf-
fic migration intentions regardless of network function types and
migration methods. This means that the amount of input required
to carry out a traffic migration is minimal. Enlightened by this find-
ing and observations on major traffic migration complexities (§2.5),
we propose the design of Egret, a traffic migration system that (1)
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Figure 1: Egret’s generic model and modular workflow

decouples high-level traffic migration intentions from low-level ex-
ecutions with a generic interface, and (2) modularizes low-level ex-
ecutions into functional building blocks that can be either shared or
swapped in a plug-and-play fashion. In this section, we first present
an overview of Egret’s generic model and its modular workflow
in §3.1, then we introduce an optimization Egret leverages to effi-
ciently manage existing and in-coming traffic migration jobs in §3.2.

3.1 A Unified Model and Building Blocks
Figure 1 shows an overview of Egret’s design. Egret allows opera-
tors to specify their traffic migration intentions through a generic
interface based on the key parameters described earlier: Target,
Peer(s), Weight(s) and Filter(s). Some of the procedures discussed
in §2.5, which contribute to most of the complexities of MOPs
and now abstracted by Egret’s interface, are modularized as build-
ing blocks in Egret’s internal workflow (detailed below). Some of
these building blocks are reusable, such as anchor point discovery
and migration mechanism discovery, because they are universal
and fundamental to all MOPs according to our study. Others are
specific to network function types or anchor point types, such as
state migration and traffic migration since they directly interface
with underlying network functions. Vendors only need to develop
these two building blocks in Egret’s modular design, as opposed to
writing completely new MOPs from scratch.

Anchor Point Discovery. As discussed in §2.5, traffic migration
intentions are independent of the type and locations of anchor
points. However, as shown by previous works [16, 21], the selection
of anchor points does play an important role in traffic migrations in
terms of performance(e.g. packet loss) and service impact. Egret’s
anchor point discovery building block leverages network topology
information stored in a network information base (NIB, commonly
found in SDN control platforms) and follows operators’ policy to
find the most suitable anchor point(s) (if necessary). Note that there
can be multiple anchor points for one migration depending on the
relative positions of the Target and Peers(s) in the network. Figure 2
shows a simple example where the servers’ migration method is
remote and their anchor points are switches.

MigrationMechanismDiscovery. In §2.4 trafficmigrationmeth-
ods are categorized as either local or remote based on where migra-
tion happens. After the discovery of anchor points from the topol-
ogy, this building block determines the actual migration method
the Target uses by querying the NIB.

Server A B C D

Switch 2

Switch 1

Switch 3 Target: A, Peer: C -> 
Anchor Point: Switch 1,2,3

Target: C, Peer: D -> 
Anchor Point: Switch 3

Figure 2: Anchor point discovery in a simple tree topology

Configuration Generation. This building block takes in parame-
ters from input plus anchor point andmigrationmethod information
from previous building blocks, and generates actual configurations
for the corresponding network components. These configurations
can be as simple as a single command to raise OSPF weight to
65535 on a router link or as complex as many flow table entries
for multiple programmable switches [21]. In this building block, a
mask-like abstraction is used for efficient management of existing
and in-coming traffic migration jobs (detailed in §3.2).

Traffic & State Migration. These two building blocks directly
interface with Targets or Anchor Points to deploy the configuration
changes for actual migrations. Compared with MOPs which are
application-, software version- and network setup-specific, these
two building blocks are, in the worst case, Target- or Anchor Point-
specific. Leveraging generic configuration solutions like OpenCon-
fig [4], these two building blocks can be further generalized and
vendors’ effort reduced.

3.2 Mask-based Job Management
In §2.5 we mention that reverse traffic migration is one of the ma-
jor sources of complexities in existing traffic migration workflows
because it requires operators to (1) keep track of deployed con-
figurations and (2) compute new configurations to revert existing
ones. To minimize the amount of state operators have to maintain
and enable easy reversions, we propose the design of a mask-based
abstraction for traffic migration jobs that is easy to manage (add,
update, revert). This design is inspired by configuration rollback
capabilities commonly found in modern routers [8]. Egret’s mask-
based APIs are shown in Table 2.

Figure 3 shows an example of a 3-port load-balancer. Each port
has a weight, indicating what portion of in-coming traffic should go
out through each port. A mask (corresponding to one traffic migra-
tion request) consists of relative weights indicating the amount of
traffic to be taken from or given to each port in a migration. Masks
are put on top of one another into a stack, at the bottom of which
is the base denoting the default configuration of the load balancer.
The current (deployed) distribution is calculated by applying all
masks to the base. In this example, the base is {30%,30%,40%}, in-
dicating by default 30% of traffic goes out of port 1 and so on. In
Figure 3-b a new traffic migration job comes in with the intention
to migrate traffic from Target 1 to 2 and 3 (assuming Targets 1, 2 and
3 are connected to port 1, 2 and 3 respectively). This will generate a
new mask {-100%,+50%,+50%} on top of the base resulting in a new
configuration {0%,45%,55%}6. New masks always go to the top of
6Because the 30% traffic of port 1 is distributed equally to port 2 and 3, each getting
15% of all in-coming traffic.
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Table 2: Egret’s mask-based APIs

API Description
add([params]) add a new mask described by [params] need to be explicitly removed if timeout not specified
update(mask-id, [params]) augment the [params] of an existing mask associated with the mask-id, including the base
revert(mask-id) remove the mask associated with the mask-id

Base

Deployed 30% 30% 40%

30% 30% 40%
Port 1 Port 2 Port 3

0% 45% 55%

30% 30% 40%
-100% +50% +50%

Port 1 Port 2 Port 3

request:
{ add
target: 1
peers: 2,3 }

0% 45% 55%

30% 30% 40%

+50% -100% +50%
-100% +50% +50%

Port 1 Port 2 Port 3

request:
{ add
target: 2
peers: 1,3 }

ɣConflict

ɢ

ɠ

a b c1

0% -100% 100%

0% 0% 100%

30% 30% 40%

+50% -100% +50%
-100% +50% +50%

Port 1 Port 2 Port 3
c2

ɤAlternativeɡRecalculate

ɥRecalculate

request:
{ revert
mask-id: 1 }

45% 0% 55%

30% 30% 40%

+50% -100% +50%

Port 1 Port 2 Port 3
d

ɦ

ɧBecomes valid

ɨRecalculate

Figure 3: Managing traffic migration jobs with mask-like abstractions: a 3-port load-balancer example.

the stack, while existing masks can be removed from anywhere.
Whenever such a change happens, the current configuration is
recalculated automatically.

3.2.1 Job interleaving and conflict resolution. Through mask stack-
ing, Egret allows different traffic migration jobs to interleave, mean-
ing individual jobs can start and finish independently (assuming
no conflicts exist between them). This is a significant improvement
over traditional MOPs which are run sequentially (§2.5) and it is
non-trivial to parallelize jobs when anchor points are shared. Egret
achieves job interleaving by keeping track of individual masks and
always recalculating actual configuration whenever changes hap-
pen. For example, in Figure 3-c1, a second job intending to migrate
traffic from Target 2 to 1 and 3 arrives while job 1 is still active.
The two jobs conflict with each other because Target 1 cannot be
both source and sink. However, Target 3 is a sink in both requests,
meaning an alternative exists for job 2. Policy-permitted, Egret
can automatically resolve conflicts and generate alternative masks
such as the one in Figure 3-c2. Additionally, in Figure 3-d, job 1 is
reverted while job 2 is active. Since Egret always recalculates the
configuration upon changes, the original mask 2 becomes valid and
is applied to base. Job 1 and job 2 are never “aware” of each other
throughout this process.

3.2.2 Achieving reverse traffic migration. In Figure 1, we see that
Egret returns a mask-id with each execution. This allows operators
to uniquely identify existing jobs. As mentioned in §2.5, reverse
trafficmigration brings an enormous amount of complexity because
additional states need to be maintained and new configurations
need to be generated. In Egret, with each mask kept track of indi-
vidually, reverse traffic migration becomes as simple as reverting a
mask, as shown in Figure 3-d.

3.2.3 Updating the base and handling runtime failures. Sometimes
the operator needs to re-adjust the default configuration of a net-
work component, or more often a failure happens rendering the
existing configuration obsolete (e.g. the number of available ports
decreases because of a failed link). These situations can be easily
handled by updating the base, either proactively by the operator or

automatically through common SDN topology discovery mecha-
nisms [2, 5, 14, 22].

4 EVALUATION
In this section, we briefly describe our prototype of Egret using
Berkeley Extensible Software Switch (BESS) [1] and use simulation
to show how Egret handles failures during traffic migration. We
evaluate how effective Egret is in simplifying traffic migration by
measuring the operations to perform and information to manage
by operators with and without Egret.

4.1 Prototype of Egret
We implement Egret’s building blocks (§3.1) in Python that com-
municate with BESS simulated data-planes through gRPC [13]. Our
prototype is capable of migrating traffic across multiple anchor
points with a simple algorithm that finds parent nodes of Target
and Peer(s) and their closest common ancestor. This allows Egret to
migrate traffic between servers on different racks which involve re-
configuring ToR switches and aggregate switches (See Figure 2). Yet
the input to trigger that migration is as simple as {Target: server-A,
Peer: server-C}.

4.1.1 Handling run-time failures. To demonstrate Egret’s mask-
based job management, especially how it handling run-time failures
by automatically updating the base (§3.2), we use BESS to simulate
an L4 load-balancer connecting to three firewalls. In this experi-
ment, we manually disconnect firewall-2 from the load-balancer to
emulate a failure after submitting a traffic migration request to mi-
grate traffic away from firewall-1 through Egret’s API and observe
how traffic distribution changes throughout the entire process. The
results are shown in Figure 4. The input in this case is even simpler
than the last: {Target: firewall-1}.

4.2 Traffic Migration Simplification
By generalizing traffic migration with its model and decoupling
intention specification from executions for automation, Egret can
significantly reduce the complexities for traffic migration compared
to traditional MOPs, as shown in Table 3. One reduction is in the
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Figure 4: Egret handling run-time failure.

number of operations performed by the operator. As mentioned
earlier, traditional MOPs require operators to run low-level config-
uration commands or modify configuration files line by line (e.g.
§2.2.3), which is error-prone and time-consuming, especially when
the number of operations increases with the size of the network.
Egret reduces this complexity by allowing operators to express their
intentions using the mask-based API with a few key parameters. As
shown in Table 3, Egret consumes only two API calls for jobs that
require reverse traffic migration (add and revert mask respectively).
Another significant reduction in complexity is the number of state
variables that need to be acquired and maintained during traffic
migrations. Using Egret, operators only need to know the Target in
the router example; Target, Peers andWeights in the MME example;
and Target, Peers and Filters in the APN-DNS example. And the
only state that is maintained is mask-id. Whereas in MOPs, opera-
tors need to record existing configurations and states (link OSPF
weights, MME connection stats, DNS entries, etc.) while running
tens or hundreds of lines of commands.

5 DISCUSSION
Egret’s applicability to all trafficmigration applications and
network function types. Even though Egret applies to the 205
MOPs from our study, it is impossible to claim universal applica-
bility. We do, however, make a few design choices to future-proof
Egret: (1) the Filter parameter of Egret’s API supports any packet
matching patterns in the form of bit-masks; (2) Egret’s categoriza-
tion of migration methods is very coarse-grained: local and remote,
which makes it easy for vendors to plug-and-play building blocks.

Conflict detection with Egret’s mask-based approach. As
mentioned earlier (§3.2), Egret rejects jobs that use existing traffic
sources as sinks and vice versa. This is intuitive for jobs that intend
to completely drain their Targets. For jobs that migrate traffic par-
tially, however, this policy can be too strict. Exploring more flexible
policies would be an interesting next step.

Time reduction by Egret.With automation and job paralleliza-
tion, there should be a considerable amount of time reduction by
Egret compared to MOPs. It is, however, non-trivial to quantify this
reduction on traffic migration alone since it is among many other
procedures in a MOP. We plan to further work with the operation
teams and address this problem in our future work.

6 RELATEDWORK
Traffic management, especially in the context of SDN, is not a new
topic. Previous works have provided many instrumental tools —
scalable and efficient rulemanagement in control and data-plane [20,
25, 26], abstractions for forwarding elements [7, 17, 19], network
function state management [12, 29, 31], and traffic engineering [15,

Table 3: Comparison in amount of operations to execute and
information to acquire/maintain by the operator

# of operations # of state variables

MOP Egret MOP Egret
(+1 for mask-id)

Router 5-10 2 # of links 1+1
MME >40 2 >10 3+1
DNS >100 1 >50 3+1

23]. Egret’s ultimate goal is to be able to incorporate and leverage all
these tools for different kinds of applications in different network
setups, while maintaining a unified interface.

Maelstrom [30] is a traffic management framework that shares
some insights with Egret such as abstracting traffic migration in-
tricacies with generic interfaces and providing reusable primitives
to compose workflows. However, Maelstrom is tailored to traffic
management for disaster mitigation and recovery and is based on
a load-balancer-only setup. Egret is a more general approach that
abstracts traffic migration from different applications and network
setups. Particularly, Egret addresses the heterogeneity of network
functions, which is less prominent in data-center settings such as
maelstrom’s. Maelstrom has also addressed several technical chal-
lenges for trafficmigration such as preserving service dependencies,
which can be incorporated in Egret’s building blocks.

Load balancing is a common way of traffic migration. Previous
works either use software load-balancers [3, 9–11, 28] or propose
new solutions [6, 24, 27] for traffic shifting. While these works focus
on improving load-balancing, Egret focuses on abstracting traffic
migration, with load-balancing being one of the remote migration
methods.

Network function state management is closely related to traffic
migration. OpenNF [12], S6 [31] and OFM [29] all use an SDN-
based mechanism (SDN switch) to steer traffic which is another
way of remote migration in Egret’s model. Khalid et al. [18] pro-
posed standardized APIs for VNF management but didn’t focus on
generalizing and simplifying traffic migration as Egret does.

7 CONCLUSION
In this paper, we revisit traffic migration, a common procedure in
many network operations, in the light of rapidly expanding virtu-
alized network functions. Our analysis of 205 change management
MOPs sheds light on the commonalities and complexities of exist-
ing traffic migration practices which motivate the design of Egret.
Compared to traditional MOPs, Egret can significantly simplify traf-
fic migration through generalization (a unified model and generic
API), automation, and efficient state management (mask-based ab-
straction).
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