
Jaguar: Low Latency Mobile Augmented Reality with Flexible
Tracking

Wenxiao Zhang
Hong Kong University of Science and

Technology
Hong Kong SAR, China
wzhangal@cse.ust.hk

Bo Han
AT&T Labs – Research
Bedminster, New Jersey
bohan@research.att.com

Pan Hui
University of Helsinki

Hong Kong University of Science and
Technology

panhui@cse.ust.hk

ABSTRACT
In this paper, we present the design, implementation and evaluation
of Jaguar, a mobile Augmented Reality (AR) system that features
accurate, low-latency, and large-scale object recognition and flex-
ible, robust, and context-aware tracking. Jaguar pushes the limit
of mobile AR’s end-to-end latency by leveraging hardware accel-
eration with GPUs on edge cloud. Another distinctive aspect of
Jaguar is that it seamlessly integrates marker-less object tracking
offered by the recently released AR development tools (e.g., ARCore
and ARKit) into its design. Indeed, some approaches used in Jaguar
have been studied before in a standalone manner, e.g., it is known
that cloud offloading can significantly decrease the computational
latency of AR. However, the question of whether the combination
of marker-less tracking, cloud offloading and GPU acceleration
would satisfy the desired end-to-end latency of mobile AR (i.e., the
interval of camera frames) has not been eloquently addressed yet.
We demonstrate via a prototype implementation of our proposed
holistic solution that Jaguar reduces the end-to-end latency to ∼33
ms. It also achieves accurate six degrees of freedom tracking and
97% recognition accuracy for a dataset with 10,000 images.
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1 INTRODUCTION
Augmented Reality (AR) recently draws tremendous attention from
both the industry and the research community. An AR system aug-
ments the physical world by rendering virtual annotation content
in a device’s camera view and aligning the pose of a virtual object
with the pose of the camera. As a result, it overlays the rendered
virtual objects on top of the camera view of the real world and cre-
ates an immersive user experience. We can divide existing software
AR frameworks into two categories: the traditional systems that
heavily utilize computer vision technologies for both object recog-
nition and object tracking, and the recently released AR Software
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Figure 1: An illustrative example of Jaguar.

Development Kits (SDKs), such as Google ARCore [2] and Apple
ARKit [3], which achieve marker-less object tracking by leveraging
motion data from IMU (Inertial Measurement Unit).

Each AR framework has its own unique challenges and advan-
tages. (1) Object recognition in computer vision involves compu-
tationally intensive tasks and a large-scale database of reference
images, which cannot be easily fulfilled by modem mobile devices
(e.g., smartphones). Cloud offloading is a promising technology
to fill the gap, where an AR system offloads the reference-image
database and certain visual tasks (e.g., feature extraction and ob-
ject recognition) to the cloud [20, 25]. However, on the client side
computer vision based tracking still suffers from a low quality due
to motion blur or view change. (2) The initial releases of ARCore
and ARKit were able to detect horizontal planes and track them
with a high quality. Although their tracking feature is flexible and
scalable, as we will illustrate in § 2, these systems are not context
aware because they do not have the object recognition capability.
Thus, the key question we ask is whether we can achieve the best of
both worlds and combine their advantages in a holistic system?

In this paper, we answer the above question through the design
of Jaguar, a mobile AR system that features accurate, low-latency,
and large-scale object recognition and flexible, robust, and context-
aware tracking. We show an illustrative example of Jaguar in Fig-
ure 1. It has two parts, a low-latency image retrieval pipeline with
GPU acceleration on edge cloud and a lightweight client applica-
tion that enriches ARCore with object recognition by seamlessly
integrating ARCore into its design. One of the primary goals of
Jaguar server is to reduce the end-to-end AR latency close to the
inter-frame interval for continuous recognition [17], which does
not require a user to pause the camera at an object of interest
for seconds. To achieve this goal, on the server side of Jaguar, we
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investigate the impact on the computational latency of various op-
timizations for the image retrieval pipeline, e.g., offloading as many
as possible computer vision tasks to GPUs.

The design of Jaguar is non-trivial and faces several key chal-
lenges. On the client side, since the tracking of ARCore works in
the physical world scale, Jaguar needs to determine the actual size
of a recognized object and transform the 2D boundary of the object
into a 3D pose. Determining the object’s physical size efficiently
and precisely at runtime is challenging. Moreover, Jaguar runs a dif-
ferent instance of annotation rendering engine with ARCore, which
requires an efficient and lightweight combination and alignment
to render precisely. On the server side, there is a tradeoff between
the accuracy of object recognition and the computation latency.
Jaguar needs to carefully design the image retrieval pipeline and
strategically balance various system requirements.

By addressing the above challenges, we make the following
contributions in this paper.
• We seamlessly integrate Google ARCore into Jaguar client for
providing precise runtime object size determination, as well as
flexible and scalable object tracking capability (§ 3.1).
• We study how different optimizations of the image retrieval
pipeline impact the computational latency on Jaguar server (§ 3.2)
and systematically investigate several practical deployment scenar-
ios that leverage GPUs for acceleration.
•We implement a proof-of-concept for Jaguar (§ 4) and demonstrate
that it can significantly reduce the end-to-end latency for mobile
AR (§ 5). We also evaluate the scalability of GPU acceleration for
supporting multiple Jaguar server instances.

2 BACKGROUND
In this section, we present the typical pipeline of mobile AR systems.
We also review existing technologies on cloud offloading and object
tracking, two major components for mobile AR.

Mobile AR Pipeline. A typical pipeline of mobile AR systems
has 7 building blocks. It starts with Frame Preprocessing that shrinks
the size of a camera frame, e.g., by downscaling it from a higher
resolution to a lower one. The next step is Object Detection that
checks the existence of targets in the camera view of a mobile
device and identifies the regions of interest (ROI) for the targets.
It will then apply Feature Extraction to extract feature points from
each ROI and Object Recognition to determine the original image
stored in a database of to-be-recognized objects. Template Matching
verifies the object-recognition result by comparing the target object
with the recognized original image. It also calculates the pose of
a target (i.e., position and orientation). Object Tracking takes the
above target pose as its initial input and tracks target object between
camera frames in order to avoid object recognition for every frame.
Finally, Annotation Rendering augments the recognized object by
rendering its associated content. Note that in this paper we focus
on AR systems that leverage image retrieval to actually recognize
objects; whereas other types of AR applications classify objects for
augmentation (which we will discuss in § 6).

Cloud Offloading for Mobile AR. To avoid performing com-
putation intensive tasks (e.g., feature extraction and object recogni-
tion) on mobile devices, AR systems can offload them to the cloud.
There are two common offloading scenarios, depending on where

feature extraction is running. (1) Systems, such as Overlay [25],
offload tasks starting from feature extraction to the cloud by up-
loading camera frames; (2) Mobile devices can also perform feature
extraction locally and send the compressed feature points to the
cloud for object recognition (e.g., VisualPrint [26]). It is worth not-
ing that cloud offloading for mobile AR is different from existing
computation offloading solutions for mobile applications, such as
MAUI [19], which offload the program code to the cloud and require
to have the same cloud execution environment as that on mobile
devices. Since we may need to use special hardware (e.g., GPU) on
the cloud to accelerate computer vision tasks and the programming
of server GPU is usually different from mobile GPU, it is challeng-
ing to run the same code on both platforms. As a result, we cannot
blindly apply existing schemes (e.g., MAUI [19]) in our work.

With emerging technologies such as augmented reality, virtual
reality, drones, and autonomous cars, data has been increasingly
generated by end users, which demands real-time communication
and efficient processing at the network edge [13]. Compared to
traditional centralized cloud services offered by, e.g., Amazon and
Microsoft, edge computing can reduce network latency for cloud-
based mobile AR applications [18, 20, 42], and provide the truly
immersive and seamless user experience. An extreme of edge com-
puting would be to offload computation tasks to nearby devices, as
proposed in Serendipity [43]. The key challenge is to satisfy the
stringent latency requirement of mobile AR through the intermit-
tent connectivity among these devices.

Object Tracking in Mobile AR. One of the fundamental chal-
lenges of mobile AR is flexible and accurate object tracking, which
is required especially in continuous object recognition where users
can freely move their mobile devices during the recognition [17].
When users move their mobile devices, an AR system needs to track
the updated pose of a target object within each frame to render the
annotation content properly. For the non-continuous case, users
need to pause the camera of a mobile device at the interested object
before the recognition result is returned [25], either locally or from
the remote cloud.

For marker-based AR which relies on the recognition of im-
ages or trackers (e.g., QR codes) and the pre-knowledge of the
environment (e.g., a database of to-be-recognized objects), object
tracking could be achieved though technologies such as optical
flow tracking [23] of recognized objects. With the emergence of
precise sensors and high quality cameras on mobile devices, AR is
transitioning to be markerless and allows users to lay annotations
into the physical world without object recognition. Markerless AR
(a.k.a. Dead Reckoning) usually solves the SLAM (Simultaneous
Localization And Mapping) problem in run-time. Example systems
include ARCore from Google [2], ARKit from Apple [3], Instant
Tracking from Wikitude [6] and Smart Terrain from Vuforia [10].

Both ARCore [2] and ARKit [3] employ image frames from the
monocular camera and motion data from IMU to track the position
and orientation of a mobile device in the 3D space. Thus, their object
tracking capability should be more flexible and scalable than other
AR SDKs that track only planar objects through object recognition.
Specially, ARCore utilizes concurrent odometry and mapping to
understand the pose of a mobile device relative to the real world, by
combining feature points from captured camera images and inertial
measurements from IMU.
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Figure 2: Architecture of Jaguar client.

3 SYSTEM DESIGN OF JAGUAR
As shown in the illustrative example in Figure 1, Jaguar consists
of two components: Jaguar client and Jaguar server. Jaguar client
utilizes the tracking method of ARCore and ARKit, and benefits
from the large-scale object recognition capability of Jaguar server.
What we add to ARCore/ARKit are the object recognition and
runtime physical size estimation capabilities, which are crucial to
make the AR system context-aware. We will present the design of
Jaguar client, especially the flexible object tracking feature in § 3.1.

The goal of Jaguar server is to not only offload the computation-
ally intensive tasks to the edge cloud, but also leverage hardware
acceleration with GPUs to push the limit of end-to-end latency for
mobile AR. We will present the design of Jaguar server in § 3.2.
Another reason we employ the cloud-based architecture is that it is
necessary for large-scale image searching in a dataset with thou-
sands of reference images, which is impossible for mobile devices
due to their limited storage.

3.1 Flexible Object Tracking on Client
We show the architecture of Jaguar client in Figure 2. It enriches
the functionality of recently proposed ARCore [2] SDK with ob-
ject recognition and physical size estimation. Although Jaguar is
currently deployed on the Android platform with ARCore, we can
easily extend its design for ARKit on the iOS Platform.

The traditional image-retrieval based AR solutions perform well
on object recognition, but they suffer from low quality or even
completely tracking loss due to occultation, motion blur or view
change. The reason is that they rely on the recognized planar object
for tracking, and the output of pose estimation is a relative pose
to that planar object. AR SDKs such as ARCore and ARKit solve

this problem by leveraging both inertial measurements from IMU
and feature points from captured camera views. However, a key
function needed by AR systems is context awareness, which is
provided by object recognition. This important feature is missing
from the initial releases of both ARCore and ARKit1.

Jaguar designs object recognition as an add-on of ARCore and
enhances its motion tracking function to get an object’s pose for
each frame. ARCore takes control of the camera hardware and uses
OpenGL to render the camera view. The view ofAnnotation Renderer
in Jaguar is overlaid on top of ARCore’s camera view. When the
App Logic triggers an object-recognition request, Jaguar extracts
the current camera frame from ARCore’s camera view. It then sends
the recognition request containing that frame to edge cloud servers
via the Network Manager. The cloud recognition result of Jaguar
includes the image object’s boundary (vertices locations) within
the camera frame, the image’s size in pixels, and other information
such as image ID, name, etc.

To render annotation content, Jaguar transforms an object’s 2D
boundary into a 3D pose in six degrees of freedom (6DoF) with
the Geometry Adapter. In OpenGL, the conversion of a 3D vertex
coordinate v3D (x ,y, z) into a 2D screen coordinate v2D (m,n) is
accomplished through matrix transformations:

v2D = P ∗V ∗M ∗v3D
whereM is the Model Matrix describing the object placement in 3D,
V is the View Matrix describing the camera placement in 3D, and P
is the Projection Matrix describing the 3D to 2D clip and projection
transformation.

In Jaguar, P and V are provided by ARCore for each frame, v2D
(the locations of an object’s vertices in the 2D camera view) and
v3D (derived from the object size in pixels) are returned from the
server. However, with the four known values, we still cannot de-
riveM from the above equation, since it’s a multi-to-one mapping
from its right hand side to the left. Imagine an object moving away
from the camera but growing in size at the same time, it may look
unchanged in the camera view. That is, for each v2D , there are mul-
tiple possibilities ofM corresponding to it, because the information
on the object’s physical size is still missing.

To determine the physical size of an object at runtime, Jaguar
utilizes both the mapping information from its client and the recog-
nition result from its server. The former models the environment in
physical scale and the latter determines the boundary and location
of the object within the environment. ARCore generates a sparse
3D point cloud of the environment as part of its SLAM function-
ality, which describes each point’s location in the physical world
scale. Some points in the point cloud could be fitted into a plane
based on their 3D locations. In OpenGL, the camera imaging plane
(camera view) is placed between the camera and the objects, and
the 3D points within a truncated pyramid frustum in front of the
camera are projected onto the imaging plane. When we perform a
ray cast from the camera in the direction of an object’s 2D vertex
within the camera view, the first plane in the point cloud hit by
the ray is the object plane, and the intersection point is exactly
the 3D location of the corresponding physical object vertex. Based

1We note that a simple image recognition feature (recognition of a few local images)
has been recently introduced for ARKit in iOS 11.3 which was released in March
2018 [9], although it is still not available in ARCore (as of April 2018).
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Figure 3: Image retrieval pipeline on Jaguar’s edge cloud.

on these vertices, Jaguar derives the physical size and the Model
MatrixM of the object, so that Annotation Renderer can place the
annotation contents precisely aligned with the object. Currently
Jaguar calculates the physical size of only planar objects, but not
for non-planar 3D objects, which is more challenging. However,
with the physical size and pose given as an input (as what ARKit
does [9]), our system would be able to track any rigid object.

3.2 Low Latency Offloading to Edge Cloud
Ideally, the end-to-end latency should be lower than the camera-
frame intervals, which is usually around 33 ms (i.e., 30 frames per
second), to achieve the best quality of user experience. Previous
work demonstrated that cloud offloading can significantly reduce
the processing latency of AR, from several seconds to a few hun-
dreds of milliseconds [17, 25]. Another benefit of offloading to edge
cloud is the reduced network transfer latency, which could be as
low as a few milliseconds. We can naturally divide server-side pro-
cessing into two parts, offline preparation and online recognition.
Offline Preparation. Jaguar’s offline processing includes 4 steps,
as shown in Figure 3. After extracting feature points from reference
images in a database of to-be-recognized objects, it first reduces
their dimension and trains a statistics model to compress them
into a compact representation. Jaguar then generates hash tables
of compressed features points for faster online object recognition.

Feature Extraction. For each image, Jaguar executes feature de-
tection and extraction to get the feature descriptors. There is a huge
body of feature extraction algorithms, such as SIFT [33], SURF [14],
ORB [41], FAST+FREAK [12] and BRISK [30]. Among them SIFT
outperforms others in terms of accuracy especially under cases of
scaling, rotation and motion blur [15, 27]. Jaguar chooses SIFT in
its design and implementation.

Dimension Reduction. Each feature point extracted by SIFT has
128 dimensions and some of them may be correlated. Jaguar lever-
ages Principal Component Analysis (PCA) to decrease the dimen-
sion of feature descriptors to 82, which also increases the accuracy
of object recognition. PCA is a statistical procedure that transforms
possibly correlated variables into linearly uncorrelated ones. Before
the transformation, we collect feature descriptors from all reference
images to train the PCA parameters.

Feature Encoding. Since the number of feature points ranges from
∼500 to 1,000 for different images, the goal of feature encoding is
to create a more compact representation with the same size for
each image. Jaguar builds a statistics model (e.g., Gaussian Mixture
Model, GMM [40]) using the feature points transformed by PCA
and then utilizes Fisher Vector (FV) [37] to further compress them
into vectors with a fixed length, one for each image.

LSH Hashing. To further accelerate the online search (e.g., using
the nearest neighbor), Jaguar utilizes Local Sensitive Hashing (LSH)
and inserts all FVs of the reference images into LSH hash tables.
Without hash tables, we need to calculate the distance (e.g., L2 dis-
tance) between the FV of a target object and that of each reference
image one-by-one, which is not scalable for a large dataset.
Online Recognition Jaguar’s online recognition follows a similar
pipeline of its offline preparation. Upon receiving an object recogni-
tion request, it first extracts the SIFT feature points of the image, and
reduces the feature dimension using PCA with the offline trained
parameters. It then creates a single Fisher Vector of the image using
the trained GMM model. To find the original image in the dataset,
Jaguar utilizes the LSH tables created in the offline preparation to
search for the top K nearest neighbors, which are considered as
recognition candidates. For each candidate, Jaguar executes SIFT
feature matching with the target object in the request image to
verify the recognition result. Theoretically, only the true matching
should have a number of matched feature descriptors larger than a
certain threshold, so that we can find the correct image after feature
matching. If no candidate reaches the threshold, there will be no
result contained in the response of the recognition request. After
that, the client can issue another request. Finally, with the original
image and the feature matching result, Jaguar calculates the pose
of the target object within the camera frame.

4 IMPLEMENTATION
Cloud Side. To accelerate computer vision tasks on edge cloud
equipped with GPUs and provide low latency offloading for mobile
AR, we study the impact on the compute latency by various opti-
mizations for the image retrieval pipeline, e.g., offloading as many
as possible computer vision tasks to GPUs using the CUDA tech-
nology from NVIDIA. Although GPU acceleration for most tasks in
the image retrieval pipeline has been studied before in a standalone
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Task Execution Time (ms)
Pre-Processing (client) 6.59 ± 1.21
Data Transfer 8.88 ± 3.29
SIFT Feature Extraction 2.40 ± 0.06
PCA Dimension Reduction 1.49 ± 0.04
FV Encoding with GMM 2.83 ± 0.07
LSH NN Searching 4.51 ± 0.38
Template Matching 3.66 ± 1.49
Post-Processing (client) 2.68 ± 1.32
Overall Latency 33.0 ± 3.79

Table 1: Breakdown of end-to-end latency under edge cloud sce-
nario. The value after ± is standard deviation. Processing latency
is measured on a Samsung Galaxy S8 smartphone.

manner, e.g., for feature extraction [16] and feature-point encod-
ing [34], the question of whether the entire accelerated pipeline
would satisfy the stringent latency requirement of mobile AR has
not been meaningfully addressed yet. Jaguar uses the GPU imple-
mentations of SIFT feature extraction and matching from Björkman
et al. [16]. Based on the SIFT features, it leverages the OpenCV [7]
implementation to train PCA parameters offline, and uses a GPU
version of PCA implementation presented in Ma et al. [34] for on-
line dimension reduction. With processed feature descriptors from
PCA, Jaguar utilizes the VLFeat [11] implementation to calculate
the Gaussian Mixture Model that represents a statistics distribution
of the descriptors. For each reference image, it creates the Fisher
Vector with the descriptors processed by PCA and GMM. The GPU
Fisher Vector encoding implementation is also fromMa et al. [34]. It
leverages a CPU based implementation from FALCONN [4] for LSH.
In our implementation, we use 32 clusters in the GMM model, and
32 hash tables in LSH, with one hash function in each hash table. To
summarize, Jaguar server executes feature extraction, dimension
reduction, feature encoding and matching on GPUs. It performs
only the nearest neighbor searching on CPUs. Later we will show
that the CPU processing time for this task is very short.

In order to evaluate the scalability of GPU acceleration for Jaguar,
we build a Docker image for the server program so that multiple
Docker containers can run simultaneously on an edge cloud server.
We present the results of our performance evaluation in § 5.4. Ide-
ally we should use Virtual Machines (VMs) to host Jaguar server
instances for supporting data isolation. However, GPU virtualiza-
tion is still not mature. For example, technologies based on device
emulation create a virtual GPU inside a VM and multiple VMs share
a single physical GPU via the host hypervisor, which suffers from
extremely poor performance [47]. Another approach with API for-
warding/remoting lacks the flexibility and could not support the
full feature set of GPUs [45]. We plan to investigate how Jaguar
can benefit from more recent proposals, such as gVirt [47] and
gScale [48], in our future work.

Client Side. Jaguar client is an Android application that utilizes
ARCore to track the device’s pose in 6DoF and calculates the physi-
cal size of objects. It uses Rajawali [1] as the 3D Engine to render
virtual annotation content. During the cloud recognition procedure,
Jaguar client has two tasks: preprocessing before sending a request
to the cloud, and post-processing after receiving the recognition
result. Preprocessing downscales the resolution of camera frames
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Figure 4: End-to-end latency under three scenarios, public cloud w/
CPU, public cloud w/ GPU and edge cloud w/ GPU. The value after
± is standard deviation. The CPU version of server implementation
follows exactly the same pipeline with the GPU version.

and encodes it into a JPEG file, the size of which is around only
10KB. Post-processing calculates the object’s physical size and 3D
pose based on the 3D point cloud generated by ARCore and the
boundary information contained in the recognition result.

5 EVALUATION
In this section, we evaluate the performance of Jaguar using the
following metrics, latency, object-recognition accuracy, scalability,
object-tracking accuracy and energy consumption.

5.1 Experimental Setup
To evaluate the latency, accuracy and scalability of Jaguar’s image
retrieval pipeline, we crawl 10,000 book-cover images of different
books from Amazon. They have a resolution of 375×500. We use
all 10,000 images as the training dataset in the offline processing
to train PCA and GMM parameters, generate their Fisher Vectors
and insert them into LSH tables. We randomly choose 100 images
from the training dataset and take photos of them using a Samsung
Galaxy S8 (SGS8) smartphone. For each book cover, we create three
versions of photo copies with different resolutions, small (200×267),
medium (300×400) and large (400×533), to understand the impact
of image quality on recognition accuracy.

We measure the end-to-end latency for both public cloud and
edge cloud scenarios. Our edge cloud server is a PC equipped with
Intel I7-5820K CPU, 64GB memory and a NVIDIA GTX 1080Ti GPU.
We create a WiFi hotspot on it and connect the SGS8 directly to the
hotspot over 802.11g at 2.4GHz, with 16 Mbps (measured) uplink
throughput and ∼4 ms RTT. Regarding the public cloud, we create
a VM on the Google Cloud Platform with 4 vCPUs, 15GB memory
and a NVIDIA Tesla K80 GPU. We connect the SGS8 to the Internet
over 802.11g 2.4GHz WiFi as well, with 4.4 Mbps (measured) uplink
throughput and ∼45 ms RTT to the Google Cloud.

5.2 End-to-End Latency
We measure the time consumed in each step of the end-to-end edge
cloud based Jaguar system and summarize the experimental results
in Table 1. During the experiments, we trigger 100 recognition
requests on the client. The preprocessing (frame resizing & JPEG
encoding) takes ∼6.59 ms, and the post-processing (physical size
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Figure 5: Recognition accuracy for a small
dataset with 1,000 images.
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Figure 6: Recognition accuracy for a large
dataset with 10,000 images.
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of server instances.

estimation, 2D to 3D transformation & renderer update) takes ∼2.68
ms. The overall client-side processing latency is thus ∼9.27 ms.

On the server side, the total processing latency is ∼14.9 ms, with
template matching for the nearest neighbor. When Jaguar executes
nearest neighbors searching on CPU, it takes ∼4.51 ms for the
dataset with 10,000 images. For K > 1 nearest neighbors, the time
taken by LSH searching will not increase, but the feature matching
in template matching will be repeated up to K times. However, as
we will show next, our image retrieval pipeline achieves close to
100% accuracy with only one nearest neighbor (for images with
400×533 resolution). We emphasize that although the size of request
images will affect the recognition accuracy, it has almost no impact
on the computational latency, because we create at most 1,000
SIFT feature points for each image regardless of its size (which can
already ensure a high recognition accuracy).

We compare the end-to-end latency of three offloading scenarios
in Figure 4, public cloud with and without GPU, and edge cloud with
GPU. The CPU version of server implementation follows exactly
the same pipeline with the GPU version. As we can see from this
figure, GPU acceleration reduces the server processing time from
∼187 ms to less than 20 ms. Our edge cloud has a more powerful
GPU which results in a shorter processing time than the public
cloud. Benefiting from the closeness of edge cloud to mobile devices,
the data transfer latency is reduced to less than 10 ms. As a result,
Jaguar achieves an end-to-end latency of ∼33.0 ms. With the help
of ultra-low latency and high throughput 5G networks, we expect
the end-to-end latency of mobile AR could be further optimized.

5.3 Object Recognition Accuracy
We define the object-recognition accuracy as the ratio between the
number of successful recognition requests over the total number
of requests. We show the experimental results for a dataset with
1,000 images and another one with 10,000 images in Figure 5 and
Figure 6, respectively. The x-axis of these figures is the number of
nearest neighbors used in template matching. The small dataset is
a subset of the large one and we create it to understand the impact
of the size of search space on the recognition accuracy.

There are two key observations from Figure 5. First, for a small
search space with only 1,000 images, the accuracy is 100% for im-
ages with a 400×533 resolution and 5 nearest neighbors for LSH
searching. Second, we can achieve more accurate recognition for
high-resolution images than that for low-resolution ones. It demon-
strates the tradeoff between object-recognition accuracy and band-
width usage (i.e., uploading high-resolution images can improve the
recognition accuracy at the cost of consuming more data usage).

The object recognition accuracy drops for the dataset with 10,000
images, as shown in Figure 6.When using only one nearest neighbor,
the recognition accuracy is 52%, 88%, and 97% for images with
200×267, 300×400, and 400×533 resolutions, respectively. It is worth
noting that the number of nearest neighbors for LSH searching has
actually a limited impact on the recognition accuracy for high-
resolution images. The accuracy is close to 100% even with one
nearest neighbor.

5.4 Scalability
To understand the scalability of Jaguar with GPU acceleration on
edge cloud servers, we measure the processing time for different
numbers of Jaguar server instances, from 1 to 10. We launch various
numbers of Docker containers simultaneously, sharing the same
GPU on a single edge cloud server, and run a Jaguar server instance
inside each container. We send 100 object recognition requests
sequentially to each instance and measure the processing time
for every request. We plot the average processing time for two
scenarios in Figure 7.

When using CUDA on a single GPU, multiple applications cannot
hold the CUDA context at the same time. As a result, the CUDA
kernels are executed sequentially for these applications, in a round-
robin fashion. In this case, the processing time increases almost
linearly with the number of instances, 10.23 ms for 1 instance and
45.28 ms when the number of instances increases to 10. We also
utilize the Multi-Process Service (MPS) from NVIDIA [36], in order
to better utilize GPU resources and improve the scalability of Jaguar.
MPS enables multiple CUDA kernels to be processed concurrently
on the same GPU. It improves the resource utilization when a
GPU’s compute capacity is underutilized by a single application, by
reducing both on-GPU context storage and GPU context switching.

There are three main observations from Figure 7. First, when
there is only one Jaguar server instance, the processing time with
MPS is higher (14.37 vs. 10.23 ms) due to the “detour” overhead
caused by MPS. Second, when we increase the number of Jaguar
server instances, MPS reduces the processing time by up to ∼20%
by better utilizing GPU resources. Third, when we have more than
9 instances running simultaneously, the performance of using MPS
degrades. One possible reason is the imbalance of its scheduling
algorithm, evidenced by the higher standard deviation shown in
Figure 7. For example, when there are 10 instances, the minimal
processing time is 16.35 ms, whereas the maximum is 95.88 ms. We
plan to address this scalability limitation of MPS in our future work
(e.g., by designing our own scheduler).
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Figure 8: Screen records of object tracking in a sequence of smart-
phone translations and rotations. The image boundary in red is ren-
dered according to the tracking results. The green cuboid is ren-
dered on top of the image to demonstrate the orientation.

5.5 Object Tracking Accuracy
The quality of object tracking is a crucial factor in providing a seam-
less AR experience. As Jaguar offers 6DoF tracking, we measure the
translation error in centimeters (cm) and rotation error in degrees
for a sequence of operations to the phone. At the beginning of the
experiment, Jaguar utilizes our edge cloud server to recognize a
movie poster, determines its physical size on the client, and then
tracks the movie poster afterwards. It renders the boundary of the
movie poster in red and a green cuboid on top of it to demonstrate
the orientation in 3D. We record the tracking results in 6DoF from
the phone’s screen during a sample sequence of 400 frames, as
shown in Figure 8, during which obvious translation and rotation
happen. In order to get the ground truth and calculate the tracking
errors, we manually label the boundary of the movie poster for
each frame and calculate the 6DoF pose accordingly.

We show the translation and rotation errors in Figure 9 and
Figure 10, respectively. It is worth mentioning that the physical size
of the image shown in Figure 8 is 12.5cm×18.5cm, and the calculated
size on the client is 12.8cm×18.7cm (with an error of only around
2.4%). We divide the frames in Figure 9 and Figure 10 into three
phases. During the first phase, we rotate the phone as shown in
the five sampled frames of the first row in Figure 8. We move the
phone left and right in the second phase (the second-row frames of
Figure 8) and forward and backward in the third phase (the third-
row frames of Figure 8). We present the translation and rotation
errors in each phase in Table 2, which demonstrate an increasing
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Figure 9: Translation error in centimeters (cm). The physical
size of the movie poster is 12.5cm×18.5cm.
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Figure 10: Rotation error in degrees.

Error Phase 1 Phase 2 Phase 3
X (cm) 0.08 ± 0.04 0.14 ± 0.07 0.23 ± 0.14
Y (cm) 0.06 ± 0.03 0.16 ± 0.10 0.24 ± 0.15
Z (cm) 0.16 ± 0.08 0.10 ± 0.06 0.33 ± 0.20
Roll (degree) 0.40 ± 0.22 0.55 ± 0.28 0.91 ± 0.73
Pitch (degree) 0.45 ± 0.28 1.77 ± 0.86 0.42 ± 0.32
Yaw (degree) 0.49 ± 0.26 0.63 ± 0.29 2.07 ± 1.34

Table 2: Tracking error in three different phases.

trend (with two exceptions). The reason is that when moving the
phone left and right, the movement is more dramatic than rotation
in phase 1. Similarly, forward and backward movement in phase 3
is more intensive than that in phase 2.

5.6 Energy Consumption
We use Batterystats [8], an official Android battery usage profil-
ing tool provided by Google, to measure the energy consumption
of Jaguar’s client application. We run the application on a fully-
charged Samsung Galaxy S8 phone for 10 minutes and export the
battery usage profile. During the 10 minutes, the phone consumes
4.71% of the overall battery capacity, indicating that our Jaguar
client can run more than 3.5 hours on a fully-charged SGS8.

6 DISCUSSION
Deep Learning is a promising solution to improve the perfor-
mance of object-classification based AR systems. For example, Ran
et al. [39] proposes a distributed infrastructure that combines both
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front-end mobile devices and cloud servers to enable deep learn-
ing for object detection and classification in AR applications. We
note that deep learning based image detection methods, such as
AlexNet [28], ResNet [22] and GoogLeNet [46], are capable of con-
ducting object detection and classification, but not object recognition,
as their goal is to classify millions of images in various categories
(e.g., 1,000 different classes for the ImageNet [5] database). How-
ever, we cannot blindly apply the deep neural network architecture
of AlexNet, ResNet and GooLeNet into Jaguar for image-retrieval
based object recognition, because they solve different problems.
For example, we need to know not only the object in an image is a
car, but also the model or owner of the car by comparing this im-
age with the reference images in a large-scale database. For object
classification, we usually have a large number of reference images
in a specific category/class to train the model. For object recogni-
tion, each reference image should compose a dedicated class, which
makes it difficult to train the model.
Latency & Bandwidth Tradeoff.When offloading computation
intensive tasks of mobile AR to cloud servers, there is a tradeoff
between end-to-end latency, object-recognition accuracy, uplink
bandwidth utilization, and mobile energy consumption [32, 44].
Here we discuss the tradeoff between latency and bandwidth. There
are two choices if we choose to offload tasks starting from object
detection by sending camera frames to the cloud [25]. We can up-
load either individual images or video streams. Although video
streams usually have a smaller size and consume less data than
individual frames for the same user perceived video quality (e.g.,
due to inter-frame compression), they buffer frames for encoding
on mobile devices and thus introduce extra latency. Also, during
the offloading we can either send feature points or upload their
compressed fingerprints [26]. The size of fingerprints should be
smaller than that of raw feature points, but their generation may
consume more energy on mobile devices and introduce extra la-
tency, as it is also a computation intensive task. We plan to improve
the performance of Jaguar by further exploring its design space
and investigating the above tradeoffs.
Limitations. There are a few limitations of the current design
of Jaguar that we intend to address in the future. (1). Jaguar uses
SIFT for feature extraction mainly due to its high accuracy for ob-
ject recognition. However, there is usually a tradeoff between the
accuracy and the feature-extraction time. There may exist other
lightweight feature extraction algorithms with reasonable accuracy
for object recognition. (2). Although it is more flexible and scalable
than others, ARCore currently tracks only the pose change of static
objects and cannot track moving objects. Jaguar inherits this limi-
tation from ARCore. (3). We have not considered offloading motion
tracking and rendering of annotation content to the cloud.

7 RELATEDWORK
Augmented Reality. There is a plethora of work on mobile AR.
For example, Nestor [21] is a mobile AR system to recognize planar
shapes and estimate their 6DoF poses, which applies recursive track-
ing for achieving an interactive frame rate. Overlay [25] leverages
sensor data to narrow down the search space of object recognition
by taking into consideration the geometric relation of objects. Vi-
sualPrint [26] reduces the bandwidth requirement for uplink by

sending compressed feature points (i.e., their fingerprints) extracted
from a camera frame to the cloud for object recognition.

Augmented Vehicular Reality (AVR) [38] supports the sharing of
visual information among nearby vehicles by aligning automatically
coordinate frames of reference. CARS [50] is a collaborative frame-
work to enable cooperations among users of mobile AR applications.
Zhang et al. [49] evaluated the cloud-offloading feature of commer-
cial AR systems and pinpointed the dominating components of the
end-to-end latency for cloud-based mobile AR. Different from the
above work, Jaguar explores GPU-based hardware acceleration on
edge cloud to significantly reduce the end-to-end latency of mobile
AR and complements the recently released ARCore with object
recognition capability.
Continuous Vision has recently become an active research topic
of mobile computing. In order to improve the energy efficiency
of continuous mobile vision, LiKamWa et al. [31] identified two
energy-proportional mechanisms, optimal clock scaling and aggres-
sive standby mode. Glimpse (software) [17] is a continuous face
and road-sign recognition system, which hides the cloud-offloading
latency by tracking objects using an active cache of camera frames.
Glimpse (hardware) [35] investigates how to accurately and flexi-
bly discard uninteresting video frames to improve the efficiency of
continuous vision, by re-designing the conventional mobile video
processing pipeline. There are also several recent proposals lever-
aging deep learning for continuous mobile vision. For example,
DeepEye [29] is a small wearable camera that can support rich anal-
ysis of periodically captured images by performing locally multiple
cloud-scale deep learning models. DeepMon [24] is a deep learn-
ing inference system for continuous vision which accelerates the
processing by offloading convolutional layers to mobile GPUs. The
above work focuses on enhancing the performance and efficiency
of continuous mobile vision. Jaguar can potentially benefit from
them to optimize the client side execution and further accelerate
the cloud side object recognition.

8 CONCLUSION
In this paper, we design, implement and evaluate Jaguar, a low-
latency and edge-cloud based mobile AR system with flexible object
tracking. Jaguar’s client is built on top of ARCore from Google for
benefiting from its marker-less tracking feature, and it enhances
ARCore with object-recognition and physical size estimation capa-
bilities for context awareness. We systematically investigate how
to optimize the image retrieval pipeline in mobile AR by leverag-
ing GPU acceleration on edge cloud and compare its performance
with offloading to public cloud with CPUs and with GPUs. Our
proof-of-concept implementation for Jaguar demonstrates that it
can significantly reduce the end-to-end latency of mobile AR and
achieve accurate 6DoF object tracking.
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