
ViVo: Visibility-Aware Mobile Volumetric Video Streaming
Bo Han

AT&T Labs Research
Bedminster, NJ

bohan@research.att.com

Yu Liu
University of Minnesota, Twin Cities

Minneapolis, MN
liu00885@umn.edu

Feng Qian
University of Minnesota, Twin Cities

Minneapolis, MN
fengqian@umn.edu

ABSTRACT
In this paper, we perform a first comprehensive study of mobile
volumetric video streaming. Volumetric videos are truly 3D, allow-
ing six degrees of freedom (6DoF) movement for their viewers
during playback. Such flexibility enables numerous applications
in entertainment, healthcare, education, etc. However, volumetric
video streaming is extremely bandwidth-intensive. We conduct a
detailed investigation of each of the following aspects for point cloud
streaming (a popular volumetric data format): encoding, decoding,
segmentation, viewport movement patterns, and viewport prediction.
Motivated by the observations from the above study, we propose
ViVo, which is to the best of our knowledge the first practical mobile
volumetric video streaming system with three visibility-aware opti-
mizations. ViVo judiciously determines the video content to fetch
based on how, what and where a viewer perceives for reducing band-
width consumption of volumetric video streaming. Our evaluations
over real wireless networks (including commercial 5G), mobile de-
vices and users indicate that ViVo can save on average 40% of data
usage (up to 80%) with virtually no drop in visual quality.

ACM Reference Format:
Bo Han, Yu Liu, and Feng Qian. 2020. ViVo: Visibility-Aware Mobile Vol-
umetric Video Streaming. In The 26th Annual International Conference
on Mobile Computing and Networking (MobiCom ’20), September 21–25,
2020, London, United Kingdom. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3372224.3380888

1 INTRODUCTION
Recent advances in wireless technology such as mmWave 5G have
fueled a wide range of emerging applications. Among them, immer-
sive video streaming plays an extremely important role. In this paper,
we study a new type of video content called Volumetric Video1. Volu-
metric video streaming is one of the enabling technologies for mixed
reality (MR) [4], and will become a key application of 5G [3, 15].
According to a recent market research report [22], it is expected
that the volumetric video market will grow from $578 million in
2018 to $2.78 billion by 2023. Major video content providers such
as Google [7] and Facebook [21] have started to investigate commer-
cializing volumetric video streaming.
1An introductory video made by a 3rd party can be found here: https://
www.youtube.com/watch?v=feGGKasvamg

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiCom ’20, September 21–25, 2020, London, United Kingdom
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7085-1/20/09. . . $15.00
https://doi.org/10.1145/3372224.3380888

Mobile Immersive Computing

1

Viewport Visibility

Occlusion Visibility

Distance Visibility

Distance: 3m

Density: 60%

Distance: 1m

Density: 90%

Distance: 5m

Density: 30%

Figure 1: Illustrative examples of the three visibility-aware op-
timizations in ViVo. The content in green cells is not visible be-
cause it is either out of the viewport (Viewport Visibility, VV)
or occluded by content in other cells (Occlusion Visibility, OV);
as a result, it will be fetched at a lower point density. Distance
Visibility (DV) dynamically adjusts the density of a point cloud
based on its distance to the viewer.

Unlike regular videos (including 360° panoramic videos) that
consist of 2D pixels, volumetric videos are 3D. Each frame of a volu-
metric video is comprised of 3D points or meshes. During playback,
viewers can freely navigate themselves with six degrees of freedom
(6DoF) movement, 3DoF of translational movement (X, Y, and Z)
and another 3DoF corresponding to rotational movement (yaw, pitch,
and roll). Volumetric videos enable numerous applications that can-
not be supported by regular videos. For example, by shooting a
high-resolution volumetric video of a family member’s daily activity,
one may later view it from different locations as if she/he was in the
same room as the viewer [52]. In another example, a surgery can be
broadcasted as a live volumetric feed, allowing medical students as
viewers to get an immersive telepresence experience.

Besides the content format, volumetric videos differ from regular
videos in other aspects including capturing, streaming, and analytics.
In this paper, we address the problem of streaming. We first con-
duct comprehensive measurements of volumetric videos to gain key
insights that facilitate our study. We then design and implement a
streaming system called ViVo (Visibility aware Volumetric video
streaming), which delivers high-quality volumetric content to com-
modity mobile devices. Among various volumetric data formats, we
focus on the Point Cloud (referred to as PtCl) representation where
each frame is a set of unsorted 3D points with attributes such as
color and intensity. PtCl is arguably the most popular volumetric
data format due to its flexibility and simplicity (§2). Nevertheless, as

https://doi.org/10.1145/3372224.3380888
https://www.youtube.com/watch?v=feGGKasvamg
https://www.youtube.com/watch?v=feGGKasvamg
https://doi.org/10.1145/3372224.3380888

MobiCom ’20, September 21–25, 2020, London, United Kingdom Bo Han, Yu Liu, and Feng Qian

we will discuss in §9, the high-level concepts of ViVo are applicable
to other data formats of volumetric videos such as 3D mesh [49, 54].

Our study consists of the following.
Characterizing PtCl Encoding and Segmentation. Similar to

regular videos, PtCl video streams need to be encoded (compressed)
to reduce their bandwidth footprint. We create five representative
PtCl videos using RGB-D cameras, and analyze the performance
of state-of-the-art PtCl encoding/decoding schemes. When they are
properly configured, typical PtCl frames can enjoy a lossless com-
pression ratio of 4× to 6×, and commodity smartphones can achieve
a decoding speed of 30+ FPS using multiple threads.

We further investigate the scheme where a PtCl stream is spatially
segmented into smaller 3D cells, each being individually encoded
and can be separately fetched. We carefully quantify the tradeoff
between cell size and segmentation overhead. In this case, we do
observe non-trivial segmentation overhead, which is higher than that
of 2D panoramic video segmentation. The above findings dictate the
design of encoding/segmentation schemes for ViVo.

Characterizing Viewport Movement and Designing Viewport
Prediction. Through an IRB-approved user study, we collect view-
port trajectories of 32 participants as they watch PtCl videos using
two interaction methods: through an MR headset and on a smart-
phone. We find that both the video content and the interaction par-
adigm affect viewing behaviors such as movement trajectory, fre-
quency, and speed. We then apply off-the-shelf, lightweight machine
learning algorithms for 6DoF viewport movement prediction. On
our data collected from the 32 users, it achieves a median error of
7–9cm for translational movement and 3–5° for rotational movement
when the prediction window is 200ms.

Optimizing Content Fetching for Bandwidth Efficiency. Next,
we propose three effective optimizations that significantly reduce
bandwidth consumption for volumetric video streaming. As shown
in Figure 1, their common high-level idea is to make the video
player visibility-aware, by judiciously determining the video content
to fetch based on how, what and where a viewer perceives. The three
key optimizations are: Viewport Visibility (VV) that strategically
discards cells not falling into the predicted viewport, Occlusion
Visibility (OV) that reduces the point density of cells occluded by
others, and Distance Visibility (DV) that adjusts the point density of a
cell based on the viewpoint-to-cell distance. Note that the concept of
VV is inspired by viewport-adaptive 360° video streaming [33, 56].
However, OV and DV are unique to volumetric videos, which explore
the depth information in point cloud data. We jointly apply the three
optimizations to maximize mobile data savings.

Developing and Evaluating the ViVo System. We integrate the
above building blocks (encoding, segmentation, viewport prediction,
VV, DV, and OV) into a holistic system with careful system-level en-
gineering. All its key logic resides on a commodity Android device
that wirelessly communicates with a stateless server. We thoroughly
evaluate ViVo over diverse networks (WiFi, emulated LTE, and
commercial 5G), users (MR headset and smartphone viewers), and
content (4 different PtCl videos), using both objective metrics (struc-
tural similarity index, SSIM [64]) and subjective scores rated by real
viewers. We highlight our evaluation results as follows.

∙ When bandwidth is sufficiently high, VV, OV, and DV can reduce
the average data usage for PtCl streaming by 29.1%, 11.4%, and

7.4% (up to 84.5%, 14.7%, and 46.9%), respectively, compared to
the corresponding baseline without the optimization. Meanwhile,
ViVo incurs virtually no perceived quality loss (SSIM >0.99).

∙ Jointly applying all three optimizations yields a data saving of
41.8% and 39.5% on average (up to 70.1% and 84.5%) for two
categories of PtCl videos, compared to the baseline fetching the
entire PtCl. The perceived quality loss also remains negligible.

∙ On commercial 5G mmWave networks (∼50m line-of-sight), ViVo
reduces the data usage by 36% and 39% (compared to the above
baseline) when playing two PtCl videos and significantly shortens
stall time, while also maintaining nearly perfect visual quality.

∙ When network bandwidth is constrained or fluctuating, subjective
scores rated by 12 participants watching 144 pairs of videos (ViVo
and baseline) indicate that ViVo outperforms (equals) the baseline
for 62.5% (28.5%) of the QoE ratings.

Overall, this is to our knowledge a first comprehensive study of
volumetric video streaming on mobile devices. We make the fol-
lowing contributions: (1) detailed investigation of PtCl encoding,
decoding, segmentation, and viewport movement patterns in the mo-
bile context; (2) three visibility-aware optimizations that effectively
reduce mobile data usage and decoding overhead for volumetric
video streaming; and (3) system design, implementation, and eval-
uation of ViVo, a full-fledged, ready-to-deploy volumetric video
streaming system for commodity mobile devices. ViVo provides a
platform for future research on volumetric video streaming for exper-
imenting with more advanced algorithms such as sophisticated 6DoF
viewport prediction and visibility-aware optimization schemes.

2 BACKGROUND ON VOLUMETRIC VIDEOS
Capturing. We can capture volumetric videos using RGB-D cam-
eras (D for depth), e.g., Microsoft Kinect [11], Intel RealSense [9],
and various LIDAR scanners [57]. They are equipped with depth
sensors and can acquire 3D data from different viewpoints. The
data captured from multiple cameras will then be merged to form
the entire scene through proper synchronization, calibration, and
filtering. There are open-source software systems for realizing this
pipeline. We use an enhanced version of LiveScan3D [44] to cap-
ture volumetric videos for this study. Structure-from-motion [60] is
another widely used technology for 3D reconstruction, and has the
potential for volumetric video capturing as well.
Data Format. 3D mesh and point cloud (PtCl) are two popular rep-
resentations of volumetric videos. 3D mesh models the structural
build of an object using a collection of vertices, edges, and faces
(polygons). There is a plethora of research on 3D mesh in the com-
puter graphics community [49, 54]. A PtCl is essentially a set of 3D
points with attributes such as color or intensity. Compared to 3D
mesh, PtCl is a more flexible and simpler representation, because it
involves only unstructured points, and does not need to maintain the
topological consistency (a requirement for 3D mesh [43]). Hence,
we focus on PtCl-based volumetric videos in this paper.
Compression of 3D PtCls has been investigated in the literature.
Most existing schemes leverage either octree-based compression [31,
36, 39, 51, 59] or 𝑘-d tree based compression [25, 27, 37, 46] for
PtCls. We refer interested readers to Maglo et al. [49] and Peng et
al. [54] for solutions of 3D mesh compression.

ViVo: Visibility-Aware Mobile Volumetric Video Streaming MobiCom ’20, September 21–25, 2020, London, United Kingdom

Vid. # Pts/Frm Frms # People SP (m3) Bitrate
P1 85.9K±3.5K 3622 1 (close) 2×2×2 302Mbps
P2 160K±9.2K 3490 2 (close) 2×2×2 563Mbps
P3 228K±3.6K 1941 3 (close) 2×2×2 802Mbps
M2 145K±17K 1847 2 (sep.) 5×2×5 510Mbps
M4 241K±3.3K 2612 4 (sep.) 7×2×7 847Mbps

Table 1: Volumetric video dataset for this study (SP: space).

3 MOTIVATION AND OVERVIEW
Streaming volumetric videos is resource-demanding. Raw (uncom-
pressed) PtCl data is often prohibitively large for streaming over
wireless networks. The representation of a 3D point typically takes
15 bytes: 4 bytes for each of the (X, Y, Z) position dimensions, and
1 byte for each of the (R, G, B) color dimensions. Thus, for instance,
streaming a volumetric video with 200K points per frame at 30 FPS
requires 15×200K×30×8 = 720Mbps of bandwidth. Compression
(encoding) is thus essential for PtCl streaming (§4).

In many scenarios, merely compressing the PtCl stream still can-
not provide a satisfactory QoE, because of either high decoding
overhead or poor network conditions that occur in today’s wireless
networks – even in 5G due to its vulnerability to blockage and at-
tenuation. Regarding the decoding overhead, we will quantitatively
show that the client-side decoding may become the performance
bottleneck even on high-end devices with multi-core processors, due
to the inherent complexity of PtCl compression (§8.8).

Given the above observations, we explore in this study how to
further reduce bandwidth consumption and client-side processing
overhead for streaming PtCl volumetric videos to mobile devices.
Our proposed system, referred to as ViVo, consists of three key
optimizations for achieving this goal: VV, OV, and DV (§6).

We face several challenges when designing ViVo.

∙ Optimizations such as VV and OV require selectively fetching a
portion of (encoded) PtCl at a specified point density level. This can
be achieved by segmenting the entire PtCl into small blocks or cells,
but the segmentation itself may incur high overhead (§4).

∙ ViVo requires robust viewport prediction (VP) to facilitate content
prefetching and reduce the motion-to-photon delay [6]. In §5.2, we
characterize real users’ viewport movement patterns when watching
volumetric videos, and propose our 6DoF VP techniques.

∙ Since all ViVo’s logic resides on mobile devices, they need to be
sufficiently lightweight, otherwise optimizations themselves may
become the performance bottleneck. We make several algorithmic
and system-level design decisions to address this challenge (§6).

4 PTCL ENCODING & SEGMENTATION
This section explores PtCl compression (encoding) and segmenta-
tion, which are two important components of ViVo.

Volumetric Video Dataset. We use Microsoft Kinect [11] to
capture more than 10 PtCl streams for this study. We show the setup
of one of our capturing systems with three Kinects in Figure 2.
We then construct a volumetric video dataset with five videos: P1,
P2, P3, M2, and M4. Among them, P1 shows a person giving a
presentation. P2 and P3 consist of 2 and 3 people talking with each
other. P1, P2, and P3 are created with a single captured PtCl per
frame. M2 depicts a cosplay show performed by two artists who are

Draco (𝑘-d tree) PCL (Octree) LEPCC
Video CR E D CR E D CR E D

P1 6.0 25 76 3.8 53 40 4.0 20 166
P2 5.4 14 46 3.8 26 21 3.7 11 90
P3 5.6 9.7 32 3.9 20 16 3.7 7.5 64
M2 4.5 14 49 3.9 31 23 3.3 11 99
M4 4.8 8.3 29 3.6 17 13 3.2 7.1 60

Table 2: Point cloud compression/decompression performance
of open-source libraries for five volumetric videos.

situated at the following coordinates in meters (0, 0, 0) and (3, 0, 3).
M4 consists of 4 artists performing singing. The four performers are
at (0, 0, 0), (0, 0, 6), (3, 0, 3) and (-3, 0, 3). Due to their large scenes,
M2 and M4 are produced by shooting each person individually, and
then merging the PtCls into a whole scene. Table 1 summarizes the
five videos in terms of their number of points per frame, number
of frames, number of people in the scene, the displayed physical
dimensions, and the raw video bitrate before compression.

Comparing PtCl Compression Schemes. We evaluate the per-
formance of three open-source PtCl compression solutions: Draco
from Google [5], Point Cloud Library (PCL) [16], and LEPCC (Lim-
ited Error Point Cloud Compression) from Esri [12]. The three
solutions use different algorithms. Draco employs 𝑘-d tree [25, 27,
37, 46] based compression. LEPCC extends LERC (Limited Error
Raster Compression) [13] for 2D images to 3D point clouds. PCL’s
compression algorithm is based on Octree [31, 36, 39, 51, 59]. To
ensure fair comparisons, we configure lossless compressions (both
the position and color dimensions, to the precision of the raw data)
for all three algorithms, except for LEPCC’s color compression.

Table 2 compares the compression ratio, compression and de-
compression latency of the above three solutions. The “CR” column
represents the compression ratio, defined as the ratio between the
raw bytes and the compressed bytes. CR differs across different
algorithms. Compared to PCL’s Octree and LEPCC, Draco’s 𝑘-d
tree yields the highest lossless CR likely due to its quantization
feature [37], which can flexibly keep the precision of decompressed
data only up to that of the original data. The impact of video con-
tent on CR is small, as the five videos belong to the same cate-
gory (performance of people, a major content type for volumetric
videos [1, 8, 10]). The “E” and “D” columns in Table 2 measure
the average per-frame encoding and decoding latency (in FPS), re-
spectively. It is tested on a server with Intel Xeon CPU E3-1270 v5
@ 3.60GHz. By comparing Table 2 with Table 1, we note that the
latency is well correlated with the number of points per frame.

Based on the results in Table 2, the highest bitrate among these
videos is still around 180 Mbps even after compression. Such a high
encoded bitrate stems inherently from the 3D nature of volumetric
videos; it also serves as a key motivation of ViVo’s visibility-aware
optimizations that significantly reduce bandwidth utilization for
volumetric video streaming. We believe volumetric video streaming
will be an important application for 5G, under which such required
bandwidth is practical and can be achieved (§8).

Decoding on Mobile Devices. In ViVo, the encoded PtCl stream
needs to be efficiently decoded on mobile devices. We next study
the PtCl decoding performance of Draco on three mainstream smart-
phones: Samsung Galaxy S8 (SGS8, released in 2017), Huawei Mate
20 (2018), and Samsung Galaxy S10 (2019), with different CPU

MobiCom ’20, September 21–25, 2020, London, United Kingdom Bo Han, Yu Liu, and Feng Qian

Figure 2: Setup of one of the volumetric
video capturing systems.

 0

 1

 2

 3

 4

 5

 6

10K 20K 30K 40K

C
o
m

p
re

ss
io

n
 R

a
ti

o

Number of Points per Cell

25cm
100cm

Figure 3: Compression ratio of cells (video
P3, 25cm vs. 100cm).

 0

 0.2

 0.4

 0.6

 0.8

 1

5K 10K 15K 20K 25K

C
D

F

Number of Points per Cell

M4
P3

Figure 4: Cell size (# of points) distribution
for two videos P3 and M4.

Phone SGS8 (2017) Mate20 (2018) SGS10 (2019)

CPU 4×2.45 GHz
2×2.6 GHz 1×2.84 GHz

Conf. 4×1.9 GHz
2×1.92 GHz 3×2.42 GHz
4×1.8 GHz 4×1.8 GHz

1 Thread 10.3±0.3 13.5±1.1 18.4±0.0
2 Threads 16.9±1.4 23.9±0.7 27.1±1.7
3 Threads 26.2±0.7 28.5±1.8 36.6±0.5
4 Threads 32.9±0.4 30.2±1.3 46.0±0.1
6 Threads 37.0±1.0 31.4±1.9 50.7±1.8
8 Threads 40.0±0.6 30.4±1.4 58.1±3.2
Table 3: Decoding performance of Draco (video P3).

P1 P2 P3 M2 M4
100cm 1.151 1.194 1.198 1.266 1.362
50cm 1.297 1.343 1.362 1.375 1.501
25cm 1.514 1.554 1.582 1.527 1.666

Table 4: Segmentation overhead for different videos. The base-
line is the corresponding video without segmentation.

configurations. Table 3 shows their decoding performance (in FPS)
for video P3 over 1941 frames, using different numbers of threads.

Using multi-threading, all three mobile devices can achieve higher
than 30 FPS decoding performance that is considered to be percep-
tually smooth. For SGS8/10, increasing the number of threads (CPU
cores) helps improve the decoding performance. The CPUs of all
three devices use ARM’s big.LITTLE heterogeneous architecture [2].
For Mate20, the performance remains stable for more than 3 threads,
because the combination of the four big CPU cores of Mate20 is
weaker than those of SGS8/10.

Impact of Segmentation on Compression. A salient feature of
ViVo is viewport-adaptive streaming of PtCl, which (ideally) delivers
only the user’s perceived portion. This approach brings significant
reduction of bandwidth utilization and client-side decoding over-
head in particular for videos consisting of objects that are spatially
separated (e.g., M2 and M4), because a viewer oftentimes cannot
see all the objects at once. One of its key prerequisites is to spatially
segment the original PtCl into smaller “sub” point clouds which we
call cells. The cells are independently downloadable and decodable,
making it feasible for the client to fetch and display portions of the
original PtCl at the cell-level granularity. However, segmentation
incurs overhead: independently encoding each cell eliminates the
opportunity for inter-cell compression, making the overall video size
(across all cells) larger than that of the unsegmented video.

We next quantify this overhead by segmenting our five videos
into cells of three sizes: 25×25×25 cm3, 50×50×50 cm3, and
100×100×100 cm3. We encode each cell using the same compres-
sion scheme (lossless Draco). Table 4 shows the segmentation over-
head, defined as the ratio between the sum of all cells’ encoded
bytes over the encoded bytes of the original video. The overhead is
non-trivial, ranging from 1.15 to 1.67 for the five videos. The smaller
the cell size is, the higher this overhead becomes. The reason is that
cells with fewer points have lower CRs and thus higher segmentation
overhead. This is illustrated in Figure 3, which shows a scattered
plot between CR and the number of points per cell, for P3 with two
cell sizes (25cm and 100cm). We also find that for the same cell
size, the five videos exhibit different segmentation overhead. It is
again attributed to their points-per-cell distribution, which is shown
in Figure 4 for videos P3 and M4 using 50cm cells. Compared to P3,
M4 has statistically fewer points per cell. This translates to a lower
CR on average and thus a higher segmentation overhead for M4.

We notice that for PtCl volumetric videos, the segmentation over-
head is typically higher than that of 2D panoramic video segmen-
tation (as reported by Flare [56]). This is because PtCl encoding,
which is still under active development by MPEG [61], is less ma-
ture than that of traditional video encoding. Note that the above
observations are also valid for PCL and LEPCC.

Implications on System Design. The above measurement results
offer several implications on the design of ViVo. First, PtCl streams
need to be properly compressed to reduce bandwidth footprint. ViVo
employs Draco that can effectively reduce bandwidth usage by a fac-
tor of 4+. Second, off-the-shelf smartphones are capable of decoding
PtCl streams with a decent number of points (>200K per frame) at
30 FPS. ViVo employs multiple CPU cores for decoding and leaves
the rendering to GPU. Third, cell segmentation incurs non-trivial
overheads. Therefore, ViVo needs to make judicious decisions about
whether to employ segmentation and how to set the cell size.

5 VIEWPORT MOVEMENT & PREDICTION
We now study viewport prediction, which is another essential part
of viewport-adaptive video streaming systems.

5.1 Understanding Viewport Movement for
Volumetric Videos from Real Users

Collecting Viewport Trajectory from Real Users. To understand
how real users change their viewport when watching volumetric

ViVo: Visibility-Aware Mobile Volumetric Video Streaming MobiCom ’20, September 21–25, 2020, London, United Kingdom

Figure 5: Translational viewport trajectories (left to right: P2 of Group P, P2 of Group H, M4 of Group P, and M4 of Group H).

Figure 6: Heatmaps for yaw and pitch (left to right: P2 of Group P, P2 of Group H, M4 of Group P, and M4 of Group H).

videos, we conduct an IRB-approved user trial. We recruit 32 users
from a large university and a large corporation. The participants are
diverse in terms of their gender (16 females), age (from 20 to 55),
and education levels (from freshman to Ph.D.). We divide the 32
participants into two groups P (Smartphone) and H (MR Headset).
Each group consists of 8 females and 8 males; the users’ other
profiles (age, education, etc.) are also largely balanced between the
two groups. We ask the participants in each group to watch 4 out of
the 5 videos (P1 is used for the tutorial purpose) listed in Table 1.

The difference between Groups P and H is the equipment that
the participants use. Group P uses an SGS8 smartphone. Its users
can rotate their viewport by moving the motion-sensor-equipped
phone, or swiping on the screen using one finger. Users can make
translational movements using two fingers: pinch or spread to move
backward or forward (Z dimension), and perform two-finger swipe
to move leftward or rightward (X dimension), and upward or down-
ward (Y dimension). To ensure good usability, the above interaction
paradigm has been evaluated on real users through a separate study.

Group H employs a state-of-the-art MR headset (Magic Leap
One [14]). Using the headset, users can make natural rotational
movement (turning head or body) and translational movement (walk-
ing or crouching) that will be picked up by high-precision on-board
motion sensors. Correspondingly, we have developed two applica-
tions, one for smartphones and another for headsets, which play
videos in a random order while recording the viewport trajectory at
30Hz. Before starting data collection, we give a tutorial using video
P1 to the users, in order to help them get familiar with our players.

Characterizing Phone Based vs. MR Headset Based Interac-
tions. Leveraging this unique dataset, we characterize phone-based
and headset-based viewing behavior of volumetric videos. The sub-
plots (a) and (b) in Figure 5 plot all 16 users’ translational movement
for P2 using phones and headsets, respectively. The red dot is the
initial position (0, 0, 3) of the viewer and the green dot is the center
of video content (e.g., the two side-by-side people in P2).

We make three observations. First, almost all movements appear
on the same plane of 𝑌 = 0, indicating that viewers seldom move
vertically, since, for example, crouching down and jumping up may
be inconvenient for most users. The median and 90th percentile of
vertical position Y during a video playback are -0.007m and 0.370m
for users in Group P, respectively (-0.009m and 0.055m for users in
Group H). Second, subplots (a) and (b) show differences between

Groups P and H: the former’s translational movement appears to
be straight as users typically maintain the direction during an on-
screen swipe. In contrast, Group H’s translational trajectories are
more smooth, as users make natural body movement when wearing
an MR headset. Subplots (c) and (d) show similar trends for M4.
Third, comparing subplots (a) and (c) as well as (b) and (d) indi-
cates different moving patterns. When viewing a single object or
co-located objects (P2), the viewer usually moves around the object
as illustrated by the “circling” pattern in subplot (b). In contrast,
when observing multiple spatially separated objects such as those in
M4, the viewer’s positions usually concentrate at the center among
these objects, in order to watch different objects by only rotating her
viewport. This will bring more data savings for VV (§8.3) as in this
viewing paradigm, it is more likely that the viewer consumes a small
portion of the whole scene.

We find that users in Group H have a statistically higher movement
speed than those in Group P. Figure 7 and Figure 8 plot the CDF of
translational speed (in m/s) and rotational speed (in degree/s), in each
dimension across all users2. For all dimensions’ movement speed
(X, Y, Z, yaw, and pitch), Group P’s 75th percentile is lower than
that of Group H. This can be explained by the convenience brought
by the MR headset that allows users to move swiftly. Meanwhile, for
translational movement, users in Group P exhibit a longer tail than
those in Group H, because some users in Group P perform quick
on-screen swipes.

Besides movement speed, another interesting finding relates to
movement frequency: users in Group H move more frequently than
those in Group P. This is demonstrated in Figure 9 that plots the
percentage of idle period, when movement occurs in none of the
translational dimensions (X, Y, Z), across all videos watched by each
group’s users. The median idle percentages are 20% and 63% for
Groups H and P, respectively. Such a disparity leads to the fact that
users in Group H tend to explore more areas than those in Group P.
Figure 5 illustrates this for X, Y and Z dimensions, as the Group-H
users’ trajectories appear to be more “dense” (subplot (a) vs. (b) and
(c) vs. (d)). The heatmaps in Figure 6 show a similar trend for the
yaw and pitch dimensions, where Group H’s heatmaps cover more
viewing directions than those of Group P.

2In this work, we consider only yaw and pitch for rotational movement, because viewers
rarely change the roll (similar to the viewing behavior of 360° videos [24, 56]).

MobiCom ’20, September 21–25, 2020, London, United Kingdom Bo Han, Yu Liu, and Feng Qian

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Speed (m/s)

Y P
X P
Z P
Y H
X H
Z H

Figure 7: CDF of translational speed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

Speed (degree/s)

Pitch P
Yaw P

Pitch H
Yaw H

Figure 8: CDF of rotational speed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Idle Percentage

Headset
Phone

Figure 9: CDF of translational idle %.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Translation MAE (m)

Y MLP
Y LR
X LR

X MLP
Z LR

Z MLP

Figure 10: LR vs. MLP: translation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Rotation MAE (degree)

Pitch MLP
Pitch LR
Yaw LR

Yaw MLP

Figure 11: LR vs. MLP: rotation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Rotation MAE (degree)

Pitch P
Yaw P

Pitch H
Yaw H

Figure 12: Group H vs. Group P: rotation.

5.2 Viewport Prediction (VP)
Compared to 360° videos, volumetric videos make VP more chal-
lenging due to the additional translational dimensions (X, Y, Z) that
also need to be accurately predicted. Our high-level design princi-
ples of ViVo’s VP approach consist of two aspects. First, the method
should be lightweight for mobile devices. Second, since volumet-
ric videos involve as many as 6DoF, having a single model that
jointly considers all dimensions may be too complex due to the large
prediction space; we therefore predict each dimension separately,
and derive the predicted viewport by combining each dimension’s
prediction result. We later experimentally demonstrate that such an
approximation, when complemented with other optimizations, can
yield a satisfactory QoE (§8).

We use two lightweight off-the-shelf machine learning models to
predict each dimension of X, Y, Z, yaw, and pitch: linear regression
(LR) and multilayer perceptron (MLP). Suppose the current time
is 𝑇 in a playback. Both methods employ a history window of ℎ
ms, which covers the viewports of frames played from 𝑇 − ℎ to
𝑇 , to train an LR or MLP model and predict the viewport position
at 𝑇 + 𝑝 where 𝑝 is the prediction window. The above training
and inference are thus performed online on a per-frame basis. We
configure the MLP with a single hidden layer with 3 neurons, and
employ hyperbolic tangent [40] as the activation function. The MLP
employs L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-
Shanno) [47] for optimization. We use scikit-learn [17] for training
and prediction. Note that we choose LR and MLP due to their low
computational overhead that enables frequent online training and
inference on mobile devices. We discuss the feasibility of employing
more sophisticated deep learning models for 6DoF VP in §9.

We utilize our viewport trajectory traces collected from the user
study to understand the prediction accuracy. We consider several
prediction windows from 50ms to 500ms, and a wide range of his-
tory windows from 33ms to 660ms at a step of 33ms (one frame’s
duration). We find that LR achieves the best prediction accuracy

when ℎ is roughly 𝑝/2, while MLP’s accuracy is maximized when
ℎ is 660ms for X, Y and Z and 66 ms for yaw and pitch, for all 𝑝.

Figure 10 plots the mean absolute errors (MAEs) of translational
movement prediction for all users in Group H, with the prediction
window set to 200ms – a practical upper bound of the looking-ahead
delay that ViVo needs to deal with in today’s WiFi and cellular
networks. Decreasing the prediction window further improves the
accuracy (figures not shown). Each sample in the CDF corresponds
to a single prediction instance. As shown, the Y (vertical) movement
exhibits the lowest MAE as users seldom move vertically (§5.1);
the X and Z predictions yield similar accuracy, with the median
being around 0.07m–0.09m. Figure 11 plots the MAE of rotational
movement prediction for users in Group H. The pitch and yaw show
similar predictability, with the median MAE being around 3°–5°.

There is no qualitative difference between the accuracy of LR and
MLP. We thus adopt LR for ViVo given its more lightweight nature.
Recall that we perform online learning where in each prediction step
(every 33ms, for an FPS of 30), a new model is trained and applied
for prediction. On SGS8, this can be completed within 1ms for all
five dimensions. We will discuss system-level optimizations that
help tolerate the prediction inaccuracy in §6.

Figure 12 compares the rotational prediction accuracy between
Groups P and H, using LR and 𝑝=200ms. We observe that users in
Group P exhibit slightly better predictability than those in Group H,
because the former move less frequently and more predictably than
the latter as quantified in §5.1. We make similar observations for
translational movement prediction. The above results indicate that
the same prediction approach can work reasonably well for both the
phone-based and headset-based interaction paradigms.

6 VISIBILITY-AWARE OPTIMIZATIONS
In this section, we present the design of ViVo’s three visibility-aware
optimizations: Viewport Visibility (VV), Occlusion Visibility (OV)
and Distance Visibility (DV).

ViVo: Visibility-Aware Mobile Volumetric Video Streaming MobiCom ’20, September 21–25, 2020, London, United Kingdom

Viewport Visibility (VV). From a given viewpoint (X, Y, Z) and
for a specific viewing direction (yaw, pitch, roll), the viewport of a
3D scene is typically determined by the so-called view frustum (a
truncation with two parallel planes of the pyramid of vision) in 3D
graphics. When viewers watch a volumetric video, only the content
inside this view frustum will be rendered on the display. The view
frustum depends on four parameters: the field of view (FoV) angle in
Y dimension (FoV-Y), the aspect ratio (i.e., the ratio between FoV’s
width and height) that indirectly specifies the FoV in X dimension,
and the distances from the viewer to the near and far clipping planes.
A typical value of FoV-Y is 45° (as adopted by ViVo), and the aspect
ratio is usually the ratio between the width and height of the display.

The basic idea of VV is to fetch the volumetric content that over-
laps with the predicted viewport. Specifically, given the predicted
viewport, ViVo computes its corresponding frustum 𝐹 through 3D
geometry. It then determines the cells that are inside or intersect with
𝐹 using view frustum culling [19, 20], as the to-be-fetched cells.

In practice, the predicted viewpoint and viewing direction may
be inaccurate. Recall from §5.2 that in order to keep it lightweight,
ViVo predicts the viewport by combining all dimensions’ prediction
results. Therefore, small prediction errors in individual dimensions
will accumulate into a large deviation from the ground truth. Empiri-
cally, using our collected viewport trajectory data, we find that even
if we double FoV-Y from 45° to 90°, it still cannot tolerate all VP
errors, due to the inherent difficulty of 6DoF VP.

To address the above challenge, ViVo conservatively employs a
large virtual viewport 𝑉𝐿 to accommodate inaccurate VP. It has the
same viewpoint and viewing direction as the predicted viewport. We
configure its FoV-Y, a critical parameter, to 𝐹𝐿=120°. Based on our
viewport trajectory data, a 120° FoV-Y can cover almost all (>99%)
content in the actual viewport. To reduce data usage, instead of using
the same point density level (PDL) for all cells overlapping with 𝑉𝐿,
we gradually reduce the PDL from the center to the periphery of 𝑉𝐿.
Note that PDL is a key factor that affects the QoE of a PtCl. In this
work, we use 5 density levels that randomly sample 20%, 40%, 60%,
80%, and 100% of the points for each cell.

We set up several smaller virtual viewports 𝑉1, ..., 𝑉𝐿−1 whose
FoV-Ys are 𝐹1 < ... < 𝐹𝐿−1 < 𝐹𝐿. For each cell 𝑐, let the initial
PDL passed to the VV algorithm be 𝐷(𝑐). We identify a virtual
viewport 𝑉𝑘 such that 𝑐 overlaps with 𝑉𝑘 but not 𝑉1, ..., 𝑉𝑘−1, and
set the PDL of 𝑐 to max{𝐷(𝑐) − 𝑘 + 1, 0}. If such a 𝑉𝑘 does
not exist, 𝑐 will not be fetched. Hence, the further a cell is away
from the predicted viewport, the lower its PDL will be. In ViVo,
we empirically choose 𝐿 = 3 and 𝑉1, 𝑉2 and 𝑉3 to be 60°, 90°,
and 120°, by investigating our viewport trajectory dataset. As a
result, even when the prediction is not accurate, users usually can
still see the video with a lower quality instead of a blank screen (or
experiencing video stalls). In the extreme case where part of the
predicted viewport is out of the 120° FoV-Y, the corresponding cells
will be missing, but that happens very rarely as will be demonstrated
by our performance evaluation in §8.

Occlusion Visibility (OV). Ideally we want to discard the video
content that falls into the viewport’s frustum but is occluded by
others. Such a PtCl visibility problem has been investigated by the
computer graphics community [41, 42, 50]. One well-known algo-
rithm is the Hidden Point Removal (HPR) operator [42]. However,
HPR together with many other solutions along the line are largely

designed for static PtCls, and they are unacceptably slow for pro-
cessing PtCl frames in real time. We implement HPR and evaluate it
on a server machine with Intel Xeon CPU E3-1270 v5 @ 3.60GHz.
It takes HPR more than 10 seconds to process a PtCl with 225K
points due to heavy-weight geometric computation (e.g., construct-
ing a convex hull), making it infeasible for ViVo. In addition, HPR
requires the position of each point, and thus can only run on the
server side.

We propose an efficient algorithm that determines the occluded
portion at the cell level given the predicted viewport. The algorithm
enumerates all cells overlapping with the predicted viewport. For
each cell 𝑐, it applies robust heuristics to calculate its occlusion level
denoted as 𝑂(𝑐). The larger 𝑂(𝑐) is, the more likely that 𝑐 will be
occluded by others. Note that since the algorithm does not know the
coordinates of individual points within a cell, it is inherently impos-
sible to derive the precise occlusion relationship. Instead, our OV
algorithm only computes a heuristic-driven likelihood of occlusion,
which, as we will evaluate later, can already bring non-trivial data
savings while maintaining almost lossless visual quality.

Now let us consider how to calculate 𝑂(𝑐) for a given cell 𝑐.
We first draw a ray from the predicted viewpoint to the center of 𝑐.
Intuitively, all cells that occlude 𝑐 must (1) intersect with the ray,
and (2) be closer to the viewpoint than 𝑐. We then use the above two
criteria to look for such cells. For performance consideration, instead
of searching for all cells, we only test 𝑐’s surrounding cells whose
distance to 𝑐 is up to 𝐿. We use the Chebyshev distance defined as
L∞(𝑐1, 𝑐2) = max(|𝑐1𝑥 − 𝑐2𝑥|, |𝑐1𝑦 − 𝑐2𝑦|, |𝑐1𝑧 − 𝑐2𝑧|). For example,
when 𝐿=1 (as adopted by ViVo), we consider only 𝑐’s 26 surround-
ing neighbors. We employ Ray-Box Intersection algorithm [65] to
perform fast intersection tests. Through the above process, we cal-
culate the total number of surrounding cells that meet both criteria,
denoted as 𝑆(𝑐). In addition, among all such cells, let the cell with
the largest number of points be 𝑐′. We also calculate the ratio of
points between 𝑐′ and 𝑐, denoted as 𝑅(𝑐). For example, if 𝑐′ and 𝑐
have 150 and 100 points respectively, then 𝑅(𝑐)=1.5. Note that the
client knows the number of points that each cell contains, through a
manifest file delivered from the server before video playback (§7).

𝑆(𝑐) and 𝑅(𝑐) are good indicators for potential occlusion. 𝑂(𝑐)
is positively correlated with 𝑆(𝑐) (the number of cells that may
occlude 𝑐) and 𝑅(𝑐) (the highest point density ratio among all cells
that may occlude 𝑐). We thus set up an empirical mapping from
(𝑆(𝑐), 𝑅(𝑐)) to 𝑂(𝑐) as:

𝑂(𝑐) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 𝑅(𝑐) < 𝛼0𝛽

𝑆(𝑐)−1

1 𝛼0𝛽
𝑆(𝑐)−1 ≤ 𝑅(𝑐) < 𝛼1𝛽

𝑆(𝑐)−1

2 𝛼1𝛽
𝑆(𝑐)−1 ≤ 𝑅(𝑐) < 𝛼2𝛽

𝑆(𝑐)−1

3 𝛼2𝛽
𝑆(𝑐)−1 ≤ 𝑅(𝑐)

where parameters {𝛼0, 𝛼1, 𝛼2, 𝛽} are set to {0.6, 1.0, 3.0, 0.8},
based on our examination of a large number of viewports from our
dataset (§5.1). Decreasing (increasing) these values makes OV more
conservative (aggressive). The last step is to use 𝑂(𝑐) to adjust the
PDL of 𝑐. Let 𝑐’s initial PDL passed to OV be 𝐷(𝑐). We reduce it to
max{𝐷(𝑐)−𝑂(𝑐), 0} to accommodate the occlusion level.

Overall, leveraging the predicted viewpoint and the cells’ point
densities, OV applies our domain knowledge and heuristics to de-
termine the occlusion level and use it to reduce the point density

MobiCom ’20, September 21–25, 2020, London, United Kingdom Bo Han, Yu Liu, and Feng Qian

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 2 3 6

S
S

IM

 4 5

80%
60%
40%
20%

Distance (m)

Figure 13: SSIM of PtCls viewed at various distances.

for each cell. Compared to HPR, the algorithm executes at sub-
millisecond level on mobile devices. It may benefit other algorithms
such as lighting estimation [30] and light field depth estimation [63]
where occlusion detection serves as a key building block.

Distance Visibility (DV). A unique property of volumetric videos
is that a user can view the content at different distances. When the
viewpoint is far away, the perceived PtCl will become small and
neighboring 3D points may be projected to the same displayed 2D
pixel. In this case, reducing the PDL brings no or little degradation
of the perceived quality. This forms the central idea of DV, which
selects each cell’s PDL according to the viewpoint-to-cell distance.

The challenge here is how to establish the mappings between the
distance and the PDL. We address it through a data-driven approach,
which consists of an offline and an online phase. At the offline
phase, we sample many PtCl frames and “view” (i.e., render) them
at different distances, angles, and PDLs, thus creating snapshots of
different viewports. We then assess the perceptual quality for these
2D snapshots using objective metrics such as SSIM. In this way,
we obtain a large number of mappings from geometric properties
(distance, angle, and PDL) to visual qualities. We next utilize such
mappings to build a model that dictates the PDL selection without
affecting the QoE. In ViVo, we build a model for each video, but
depending on the content, it may be feasible to construct a model
for a category of videos or a part of a video. In the online phase,
ViVo utilizes the model and the geometric properties of the predicted
viewpoint to calculate in real time the proper PDL for each cell.

We next illustrate the DV algorithm by walking through an exam-
ple for video P2. In the offline phase, we select 10 frames (PtCls)
from P2. For each PtCl, we take 6,000 snapshots by varying the
translational positions – 20 values of X, 20 values of Z, 3 values
of Y (given that viewers seldom move vertically, see §5.1), and 5
PDLs (sampling 20% to 100% of points in each cell). To reduce the
feature space and thus the model building time, we fix the viewing
direction to be always toward the center of the PtCl. The rationale is
our empirical observation that rotational movements have a much
smaller impact on the perceptual quality than translational move-
ments, which directly changes the viewpoint-to-PtCl distance.

For each of the 48,000 snapshots rendered from PtCls without the
highest PDL (100%), we calculate their SSIM indexes, using the cor-
responding snapshots with the highest PDL as the ground truth. We
then visualize our model in Figure 13, which plots the relationship
between the viewpoint-to-PtCl distance and the SSIM for all 48,000
snapshots. As shown, given a PDL, the SSIM statistically improves
as the distance increases. According to a previous study [26], an
SSIM higher than 0.98 means that the rendered content is visually

Mobile Immersive Computing

1

ViVo: Visibility-Aware Volumetric Video Streaming

Real-Time Viewport

Movement

Network
Capacity

Estimation

Viewport
Prediction

Rate
Adaptation

Visibility Aware
Optimizations

Remote Server

Cell Decoding

Cell Combination

Decoded Point
Cloud Buffer

Render & Display
1 Lightweight machine learning

for viewport prediction

2 Separation of cell selection &
and quality determination

3 Optimizations based on viewport,
occlusion & distance visibility

5 Asynchronous high-performance
cell decoding

6 Cache of decoded point clouds
for smooth transitions

4 Selection of point density based
on network conditions

Figure 14: The system architecture of ViVo.

lossless. To determine the PDL at a given distance 𝑑, we thus apply
an SSIM threshold of 0.98, and select the lowest PDL 𝑙 such that all
snapshots with 𝑑 and 𝑙 bear SSIM indexes of at least 0.98.

Figure 13 indicates that given a PDL, its lowest SSIM increases
almost monotonically as the distance increases. This allows us to
conveniently simplify the model into discrete mappings from dis-
tance ranges to PDLs. In the example shown in Figure 13, the map-
pings are [0, 3.2)→100%, [3.2, 4.2)→80%, [4.2, 5.2)→60%, [5.2,
6.2)→40%, and [6.2, ∞)→20%. They correspond to the vertical
lines in Figure 13. The above model construction procedure is a
one-time effort per video, and can be fully automated. We apply it to
other videos in our dataset (e.g., the model for P3 is almost the same
as that for P2). Then in the online phase, for each cell 𝑐, ViVo will
use the (predicted) viewpoint-to-cell distance to lookup a PDL, and
use that level for 𝑐 if it is lower than the initial level passed to the DV
algorithm. The size of the lookup table is determined by the number
of PDLs, which, similar to the encoding bitrate ladder for adaptive
bitrate (ABR) streaming, is usually small (e.g., <10) in practice.

Combining VV, OV, and DV. The three optimizations focus on
different aspects of volumetric data fetching and rendering and can
be jointly leveraged in a natural manner. Specifically, ViVo first ap-
plies DV to obtain an initial point density level for each cell, followed
by VV and OV, which may further reduce the cells’ density levels
depending on the viewport and the occlusion levels, respectively.

7 SYSTEM INTEGRATION
We integrate the components described in §4, §5 and §6 into a
holistic system and show its architecture in Figure 14. All ViVo’s
key logic resides on a client device that wirelessly communicates
with a stateless server, not requiring support from a cloud or edge
server for offloading/acceleration. The segmentation, encoding, and
DV model training are performed offline (not shown in the figure).
At runtime, before playing a video, the player first fetches a small
manifest file from the server. It contains each cell’s position, size,
the number of points, and the DV model. During the playback, ViVo
keeps collecting the viewport trajectory and performing VP. The VP
results are utilized by DV, VV, and OV. Subsequently, ViVo executes
a lightweight throughput-based rate adaptation algorithm [38] to
assess if the PDLs chosen by the optimizations can be satisfied by
the estimated network capacity. If not, the rate adaptation module
will globally reduce the PDLs. After rate adaptation, ViVo issues
the requests for the cells to the server.

With the help of VP, ViVo (pre)fetches the cells in the predicted
viewport and decodes them with multiple decoders, before merging

ViVo: Visibility-Aware Mobile Volumetric Video Streaming MobiCom ’20, September 21–25, 2020, London, United Kingdom

and caching them in the Decoded Point Cloud Buffer (shown in
Figure 14). At the playback time (i.e., when the ground-truth view-
port is determined), ViVo can thus immediately render the decoded
point cloud data in the buffer. Thus, the motion-to-photon latency is
essentially the rendering latency, which is measured to be low (e.g.,
<6ms for a frame with around 100K points on SGS8).

The above processing is executed on a per-frame basis. Benefiting
from our various performance optimizations, it can be performed at a
line rate of 30+ FPS. Meanwhile, ViVo properly decodes the received
cells and renders them at 30 FPS based on the user’s viewport. It
maintains a decoded cell buffer of 5 frames. The shallow buffer
facilitates a short VP window and therefore good VP accuracy. We
emphasize that ViVo determines the viewport visibility, occlusion
visibility, and distance visibility all on the client side. This helps
address the scalability issue faced by a server-side approach.

Implementation. We implement the ViVo PtCl video player on
Android devices and its video server on Linux. For performance
consideration, we use Android NDK (C++) for visibility determina-
tion, scheduling, cell fetching, and PtCl decoding. We cross-compile
the Draco library for decoding PtCls on Android devices and utilize
GPU-accelerated OpenGL ES for rendering PtCls. Unless other-
wise mentioned, PtCl decoding is performed over four threads. Our
implementation does not require root access. We have tested ViVo
on multiple mainstream mobile devices, including SGS8, SGS9,
SGS10, and Mate20, all loaded with Android OS 7.0+. We imple-
ment the ViVo video server in C/C++ on Linux (tested on Ubuntu
18.04, CentOS 7 and RHEL 7.6 distributions). The client-server
communication is realized by a custom protocol over TCP, but it can
also be implemented using standard application layer protocols such
as HTTP(S). In total, our ViVo implementation consists of 8,000+
lines of code (LoC): 2,000+ LoC in Java and 4,000+ LoC in C++ for
the video player, and 2,000+ LoC in C++ for the server.

8 PERFORMANCE EVALUATION
8.1 Experimental Setup
Our client devices are off-the-shelf SGS8 (Android 7.0, Snapdragon
835 system-on-chip, 4GB RAM) and SGS10 (Android 9.0, Snap-
dragon 855 system-on-chip, 8GB RAM). Unless otherwise men-
tioned, we use SGS8 in our experiments. We set up a commodity
server with Intel Xeon CPU E5-2680 v4 @ 2.40GHz and Ubuntu
18.04 as the video server. For controlled experiments, we connect the
mobile device and the video server using a commodity 802.11ac AP
at 5GHz. The end-to-end peak downlink throughput is 320+ Mbps,
and the client-server PING latency is <10ms. In addition to testing
on bare WiFi network, we assess ViVo’s performance over fluctuat-
ing network conditions in a reproducible fashion, by using the tc
tool to replay 10 network bandwidth traces collected at multiple loca-
tions from a large commercial LTE network in the U.S. The average
bandwidth of these traces ranges from 73 Mbps to 174 Mbps, and
the standard deviation ranges from 13 Mbps to 28 Mbps. During the
replay, we also use tc-netem to increase the end-to-end latency
to 60ms, a typical RTT for today’s LTE networks. For real-world
experiments, we use a commercial 5G mmWave network in the U.S.
(launched in 2019). Regarding the PtCl content, we use videos P2,
P3, M2, and M4 listed in Table 1 (P1 is used for the tutorial purpose)
and replay the 32 users’ viewport traces collected in §5.1.

VV OV DV
P2 0.9977±0.0068 0.9967±0.0057 0.9968±0.0063
P3 0.9977±0.0044 0.9964±0.0046 0.9963±0.0061
All 0.9977±0.0060 0.9966±0.0054 0.9966±0.0062

Table 5: SSIM for individual optimizations.

8.2 Effectiveness of Individual Optimizations
We first assess the effectiveness of individual optimizations: VV,
OV, and DV. We replay all 16 Group-H users’ viewport traces of P2
and P3, and measure two metrics: traffic volume and visual quality.
They incur the key tradeoff that ViVo needs to balance. For VV, the
baseline fetches the whole PtCl without segmentation; ViVo uses
100×100×100 cm3 cells, and dynamically adjusts the viewport
according to the VV algorithm as described in §6. For the baseline
of OV and DV, it uses 100×100×100 cm3 cells and a very large
viewport of 120° (FoV-Y, see §6); only cells overlapping with the
viewport will be fetched. For a fair comparison, ViVo uses the same
configuration as above when evaluating OV or DV. The rationale
of having such a baseline is to separate the impact of OV and DV
themselves from that of segmentation. We conduct our experiments
on unthrottled 802.11ac WiFi networks and configure the baseline
scheme to fetch the content at the highest PDL. For ViVo, the initial
PDLs for all cells are set to the highest; the three optimizations may
selectively reduce some of them based on the optimization logic.

Figures 15, 16, and 17 plot the encoded bitrate for VV, OV, and DV.
Each sample corresponds to one video’s playback using the viewport
trajectory of one user (among the 16 users). The “Base” and “Opt”
bars show the results for unoptimized playbacks (still encoded) and
optimized playbacks. We show the results of two videos (P2 and P3)
separately. VV achieves the highest gain, with a median data usage
reduction of 29.1% (up to 84.5%). Figure 15 indicates that in some
cases, ViVo may fetch more data than the baseline. This is caused
by the segmentation overhead: when, for example, the viewport
contains the entire PtCl, VV pays the penalty of segmentation. This
is not a hard limitation of ViVo, and can be mitigated by dynamically
switching among different cell sizes based on the predicted viewport.
Figure 16 shows that for OV, the saving is relatively smaller, around
10% on average. This is attributed to ViVo’s conservative OV design
to maintain good visual quality. Figure 17 indicates that the average
data saving of DV is comparable to that of OV. However, in some
cases where the viewer is far away from the PtCl, the saving can
reach 46.9%.

Table 5 shows the average visual quality of viewport content
using SSIM [64], yielded by the three optimizations. Recall that an
SSIM higher than 0.98 means that the rendered content is visually
lossless [26]. When calculating the SSIM of viewport content for
each frame, we generate the ground truth by rendering the PtCl from
the original volumetric video at the highest PDL based on the user’s
actual viewport. The visual quality is averaged over 10K randomly
samples per optimization. For all optimizations, their SSIM indexes
are higher than 0.99, indicating almost perfect visual quality.

8.3 Effectiveness of Combined Optimizations
We now evaluate the benefits of combining multiple optimizations
(VV, OV, and DV). Similar to §8.2, we replay all 16 Group-H users’
viewport trajectories over unthrottled 802.11ac WiFi, at the highest

MobiCom ’20, September 21–25, 2020, London, United Kingdom Bo Han, Yu Liu, and Feng Qian

 45
 90

 135
 180

P2-Base

P2-Opt

P3-Base

P3-Opt

B
it

ra
te

(M
b
p
s)

Figure 15: VV only: P2 & P3.

 45
 90

 135
 180

P2-Base

P2-Opt

P3-Base

P3-Opt

B
it

ra
te

(M
b
p
s)

Figure 16: OV only: P2 & P3.

 45
 90

 135
 180

P2-Base

P2-Opt

P3-Base

P3-Opt

B
it

ra
te

(M
b
p
s)

Figure 17: DV only: P2 & P3.

 45
 90

 135
 180

P2-Base

P2-Opt

P3-Base

P3-Opt

B
it

ra
te

(M
b
p
s)

Figure 18: VV+OV: P2 & P3.

 45
 90

 135
 180

P2-Base

P2-Opt

P3-Base

P3-Opt

B
it

ra
te

(M
b
p
s)

Figure 19: All Three: P2 & P3.

 45
 90

 135
 180

M
2-Base

M
2-Opt

M
4-Base

M
4-Opt

B
it

ra
te

(M
b
p
s)

Figure 20: VV only: M2 & M4.

 45
 90

 135
 180

M
2-Base

M
2-Opt

M
4-Base

M
4-Opt

B
it

ra
te

(M
b
p
s)

Figure 21: VV+OV: M2 & M4.

 45
 90

 135
 180

M
2-Base

M
2-Opt

M
4-Base

M
4-Opt

B
it

ra
te

(M
b
p
s)

Figure 22: All Three: M2 & M4.

Videos VV VV+OV VV+OV+DV
P2 & P3 0.9977±0.0060 0.9963±0.0064 0.9951±0.0066

M2 & M4 0.9973±0.0056 0.9967±0.0063 0.9946±0.0081
Table 6: SSIM for VV only, VV+OV, and VV+OV+DV.

(initial) PDL. Here we consider three schemes: (1) VV only, (2) VV
+ OV, and (3) VV + OV + DV. The baseline is selected as fetching
the whole PtCl without segmentation, also at the highest PDL.

Figures 18 and 19 show the results of VV+OV and VV+OV+DV
for P2 and P3. Compared to VV only (Figure 15), VV+OV reduces
the traffic volume by 4.95% (5.64% for P2 and 4.26% for P3), and
further invoking DV brings an additional reduction of 5.15% (5.71%
for P2 and 4.59% for P3). The results indicate the effectiveness
of the synergy among the three optimizations. Meanwhile, when
jointly applied with VV, OV and DV bring lower gains than when
they are applied individually, because the set of cells that different
optimizations deal with may overlap. For example, both VV and DV
may reduce the density of the same cell but for different reasons –
not appearing in the predicted viewport or far away from the viewer.

Figures 20, 21, and 22 present the results of VV, VV+OV, and
VV+OV+DV, respectively, for M2 and M4. Compared to VV only,
VV+OV shrinks the median data usage by 1.80%, and using all three
optimizations brings that down by an additional 7.28%. VV is more
effective on M4 than M2, because the performers in M4 are more
scattered, making it less likely for the viewer to see the entire scene
or most of it (§5.1). Overall, the above results indicate that jointly
applying VV, OV, and DV yields a data saving of 41.8% and 39.5%
on average (up to 70.1% and 84.5%) for M2/M4 and P2/P3 (Group
H users), respectively, compared to the baseline.

Table 6 shows the average SSIM of VV, VV+OV, and VV+OV+DV,
using the same ground truth as Table 5. We make two observations.
First, the visual quality is consistently high (>0.99), indicating when
jointly applied the optimizations incur almost no quality degradation.
Second, SSIM does drop slightly when more optimizations are used.
Overall, the results suggest that ViVo trades a negligible amount of
visual quality loss for a considerable reduction of data usage.

8.4 Comparing Interaction Methods
Figure 23 compares the encoded bitrate between users in Groups H
and P for videos P2 and P3, with all three optimizations enabled. The

setup is the same as the “VV+OV+DV” configuration in §8.3. For
P2 and P3, ViVo appears to be less effective on Group P (average
saving 9.98%) than on Group H (average saving 40.0%). This is
because viewport movement for users in Group H is more flexible
and convenient than users in Group P. As a result, we find that users
in Group H are more likely to look around “randomly”, leading to
viewports that contain only a small (or even zero) portion of the PtCl.
This creates more opportunities for ViVo’s optimizations for P2 and
P3. However, such a scenario is less likely to occur in M2 and M4
where the performers are separated out. As shown in Figure 24, both
groups exhibit similar reductions of encoded bitrate for M2 and M4,
despite the different interaction methods between the two groups
(§5.1). We also calculate the perceived visual quality and observe
consistently high SSIM values (>0.99) when all optimizations are
applied to users in Group P or H.

8.5 Performance on Commercial 5G Networks
We conduct experiments over a commercial mmWave 5G network
to evaluate the performance of ViVo. We compare VV+OV+DV and
the baseline described in §8.3 (using videos P3 and M2, unthrot-
tled 5G connectivity, the highest initial PDL, one Group H user’s
viewport trace with an average viewport prediction accuracy). Our
SGS10 phone has a line-of-sight (LoS) distance of ∼50m to the 5G
base station under a clear sky. We repeat each experiment 3 times.
The results are qualitatively consistent with our findings in §8.3.
For P3 (M2), on average, ViVo reduces data usage by 36% (39%).
Meanwhile, ViVo exhibits fewer stalls than the baseline: 1.0s/min
vs. 1.2s/min on average for P3, and 0.6s/min vs. 1.6s/min for M2.
All playbacks’ SSIM values are consistently high (>0.99). The
above results validate that ViVo can indeed bring considerable data
savings while maintaining good visual quality when operating on
commercial 5G networks.

8.6 ViVo Performance under Limited/ Fluctuating
Bandwidth

We now assess ViVo’s performance when network throughput is
limited and/or fluctuating. In this scenario, video quality may de-
grade as dictated by the rate adaptation module, and stalls may
occur. Since there is little existing work on objective QoE metrics

ViVo: Visibility-Aware Mobile Volumetric Video Streaming MobiCom ’20, September 21–25, 2020, London, United Kingdom

 45
 90

 135
 180

P2-Base

P2-GP-Opt

P2-GH-Opt

P3-Base

P3-GP-Opt

P3-GH-Opt

A
v
g
 B

it
ra

te
(M

b
p
s)

Figure 23: All Three: GH vs GP
(P2 & P3).

 45
 90

 135
 180

M
2-Base

M
2-GP-Opt

M
2-GH-Opt

M
4-Base

M
4-GP-Opt

M
4-GH-Opt

A
v
g
 B

it
ra

te
(M

b
p
s)

Figure 24: All Three: GH vs GP
(M2 & M4).

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1 0 1 2 3 4 5

C
D

F

Score Diff

Figure 25: QoE: MOS.

 300

 600

 900

P3-Base

P3-Opt

M
2-Base

M
2-Opt

M
4-Base

M
4-Opt

R
cv

d
 B

y
te

s
(M

B
)

Figure 26: QoE: Bytes.

for such complex scenarios in the context of volumetric videos,
we resort to subjective metrics. We conduct another IRB-approved
user study with 12 diverse participants. Note that this user study
is different from the user trial described in §5.1 and the users here
are a subset of those from the previous trial. We ask each partici-
pant to watch 12 playback groups. We define a group as (𝑉,𝐵,𝑈).
𝑉 ∈ {P3,M2,M4} is the video (we exclude P1, the tutorial video,
and P2, which is a bit too long); 𝐵 is the network bandwidth trace
randomly selected from the 10 traces described in §8.1; 𝑈 is the
viewport trace randomly selected from the 32 users’ trajectories for
𝑉 (described in §5.1).

Each group consists of a pair of playbacks of 𝑉 , both conducted
by replaying 𝐵 (to emulate LTE bandwidth dynamics) and 𝑈 (to
reproduce a real viewer’s viewport trajectory). The only difference
is the streaming algorithm: one playback employs ViVo and another
uses the baseline. For ViVo, we enable all three optimizations (VV,
OV, and DV); the baseline fetches the entire PtCl without applying
segmentation. Both schemes use the same throughput-based rate
adaptation algorithm described in §7. We randomly order the two
playbacks within each group, and thus a participant does not know
which one is streamed by ViVo.

For each group, we ask the participants to compare the QoE of
both playbacks by providing mean opinion scores (MOS), ranging
from 1 to 5 (1=bad, 2=poor, 3=fair, 4=good, 5=excellent). Each of
those 12 participants watches 12 groups (we assign 4 groups to each
of the 3 videos). Therefore we collect 144 pairs of scores in total.
Figure 25 plots the distribution of the score differences between
ViVo and the baseline, where a positive (negative) value indicates
that ViVo outperforms (underperforms) the baseline, across all 144
groups. The results indicate that for 62.5%, 9.0%, and 28.5% of the
groups, ViVo yields a better, worse, and equal QoE compared to the
baseline, respectively. Meanwhile, Figure 26 shows the data usage of
ViVo across different sets of groups. When the bandwidth is limited
and/or fluctuating, on average, ViVo fetches a similar amount of
data compared to the baseline, but offers considerably better QoE
as judged by the viewers. This is because ViVo’s visibility-aware
optimizations eliminate or reduce the point density for cells that
are outside the viewport, occluded by others, or far-away from the
viewer. ViVo uses the saved bandwidth to fetch cells that are visually
more important at a higher PDL than the baseline.

8.7 Impact of Cell Size
So far all our experiments employ 100×100×100 cm3 cells. We
consider two additional segmentation schemes: 25×25×25 cm3 and
50×50×50 cm3. We use the “VV+OV+DV” setup in §8.3 to conduct
the experiment, using the viewport trajectory traces of all 32 users
(Groups H and P), unthrottled WiFi, and video M2 at the highest
(initial) PDL. Figure 27 plots the impact of different cell sizes on

 0

 0.2

 0.4

 0.6

 0.8

 1

100 50 25

N
o
rm

a
liz

e
d

 B
y
te

s

Figure 27: Different segmenta-
tions for M2.

 0

 20

 40

 60

 80

B1 B2 B3 B4 V1 V2 V3 V4

S
ta

ll
Ti

m
e
 (

s/
m

in
)

Figure 28: Stall time with dif-
ferent number of decoders.

data usage. A more fine-grained segmentation scheme does not
reduce data usage: a small cell size allows the player to fetch fewer
points, but such gains are canceled out by the incurred segmentation
overhead as quantified in Table 4.

Figure 27 suggests that a small cell size increases the variation
of data usage. To see the reason, consider two extreme cases. First,
when the viewport contains the entire PtCl, having a small cell size
incurs more data usage due to the segmentation overhead. Second,
when the viewport only covers a tiny portion of the PtCl, having a
small cell size may consume less data because of the fine-grained
segmentation. We find the above observation applies to other videos
and PDLs in general. Also, when the PDL is fixed, changing the cell
size does not affect SSIM.

8.8 Impact of Multi-threaded Decoding
We now quantify how multi-threading (Table 3) affects ViVo’s
performance. We stream the four videos at their highest (initial)
PDL over unthrottled WiFi, and measure the stall time (second per
minute). Since the wireless network is not the bottleneck, a stall can
be caused by only slow decoding. As shown in Figure 28, we eval-
uate eight configurations: 𝐵𝑘 (1≤ 𝑘 ≤4) is the baseline where the
entire PtCl is streamed and decoded using 𝑘 threads; 𝑉𝑘 (1≤ 𝑘 ≤4)
represents ViVo with all three optimizations enabled and 𝑘 threads
for decoding the 100×100×100 cm3 cells. We repeat each 𝐵𝑘 for
five times; for each 𝑉𝑘, we randomly pick five users (2 from Group
P and 3 from Group H) and replay their viewport traces on SGS10.

We make two observations from Figure 28. First, using more
threads helps reduce ViVo’s stall time (i.e., the decoding latency) –
echoing our findings in Table 3. Second, ViVo significantly outper-
forms the baseline in terms of stall time: when using one thread, the
90-percentile stall time of the baseline and ViVo are 71.2 and 52.4
s/min respectively (7.95 and 0.02 s/min, respectively when using
four threads). This is attributed to ViVo’s optimizations that make
the mobile client fetch and decode less content.

8.9 Energy and Resource Utilization
We measure the resource utilization by playing videos M2 (sparsest)
and M4 (densest) using the “VV+OV+DV” setup in §8.3: unthrot-
tled WiFi, the highest (initial) PDL, four decoding threads, and

MobiCom ’20, September 21–25, 2020, London, United Kingdom Bo Han, Yu Liu, and Feng Qian

SGS10. Starting with a fully charged phone, we repeatedly play
M2 (M4) for 30 minutes and measure the resource utilization using
the Snapdragon Profiler from Qualcomm [18]. The highest memory
utilization during the playback is 358 MB (383 MB); the CPU uti-
lization is less than 28% (38%), depending on how much content to
decode; the GPU utilization is always less than 10% due to the small
rendering overhead for PtCls. The highest temperature of the GPU
and the overall device are 46°C and 50°C (53°C and 60°C), respec-
tively. After the 30-minute playback, the battery life drops 5% (6%)
from 100% for M2 (M4). Overall, we believe the above resource
and energy consumption are acceptable. For all metrics above, the
results of ViVo are better (lower) than those of the baseline scheme
(fetching the entire PtCl). For example, when streaming M4 using
the baseline, the CPU utilization is ∼60%.

9 DISCUSSION
Inter-Frame Compression. The current design of ViVo compresses
each volumetric frame individually without considering the com-
pressibility across frames. We plan to explore efficient solutions
for inter-frame compression to further improve ViVo’s bandwidth
utilization. For instance, Kammerl et al. [39] extend the octree data
structure to perform real time inter-frame compression for PtCl
streams. However, inter-frame compression may increase decoding
overhead on the client side, in particular for mobile devices with
weak computational power. Another challenge is that inter-frame
compression requires dividing a video into group-of-frames, which
are typically the smallest fetching units. As a result, even if a pre-
dicted viewport overlaps with a single frame of a certain cell, we
need to download the cell’s entire group that the frame belongs to
in order to properly decode it. This may reduce bandwidth saving
or even increase data usage compared to the current design of ViVo.
We will carefully study the above tradeoff in our future work.
3D Mesh Volumetric Videos. We can potentially apply the high-
level ideas of ViVo (i.e., VV, OV, and DV) to 3D mesh based volumet-
ric video streaming where each frame consists of meshes (polygons)
instead of points. In the computer graphics community, there have
been several efforts relevant to streaming polygon models [32] such
as view frustum culling [58], collision detection between volumet-
ric meshes [62], and view-dependent simplification for rendering
triangle meshes [29]. Nevertheless, a key challenge here is that the
computation complexity of processing 3D mesh is typically much
higher than that of PtCl. As a result, it might be difficult, if not
impossible, to directly apply the above work to a mobile volumet-
ric video streaming system. More research is therefore needed to
develop lightweight and efficient schemes for streaming 3D mesh
based volumetric videos.
Deep Learning for Viewport Prediction. We plan to investigate
whether ViVo can benefit from deep learning (DL) such as long short-
term memory (LSTM) [34] for more accurate viewport prediction,
which will in turn improve the efficiency of the three visibility-aware
optimizations. Indeed, the inherent complexity of 6DoF movement
makes DL a promising approach for capturing the hidden and so-
phisticated patterns of viewport movement. However, DL typically
requires more compute resources than traditional machine learning
such as those currently used by ViVo. As a result, we may need to
execute the inference on the server side or on an edge proxy.

10 RELATED WORK
Volumetric Video Streaming. Volumetric videos represent an emerg-
ing form of multimedia content, and few studies have investigated
them. Park et al. [53] propose a greedy algorithm for volumetric me-
dia streaming. DASH-PC [35] proposes a manifest file format follow-
ing the DASH standard for volumetric video streaming. AVR [57]
streams and analyzes PtCl data between vehicles to enhance au-
tonomous driving. Nebula [55] is a recent proposal that leverages
edge cloud to transcode volumetric videos into 2D regular videos. To
the best of our knowledge, ViVo is the first practical visibility-aware
volumetric video streaming system for mobile devices.
QoE Metrics remain an open problem for volumetric video stream-
ing, although they have been thoroughly studied for regular videos.
Existing work in this category focuses on the quality of static 3D
models. For instance, Alexiou and Ebrahimi [23] introduce an ob-
jective metric to measure the quality degradation of distorted PtCls.
Dumic et al. [28] offer a nice survey on both subjective and objec-
tive quality assessments for 3D video sequences. In this paper, we
evaluate the performance of ViVo using both objective metrics such
as SSIM [64] and the subjective mean opinion score (MOS).
360° Video and VR Streaming. 360° panoramic video streaming
has been a hot research topic recently. Researchers have devel-
oped several viewport-adaptive systems such as Rubiks [33] and
Flare [56]. There also exist several VR streaming systems such as
Furion [45] and Liu et al. [48]. ViVo instead applies viewport adap-
tation to 3D volumetric content, and proposes volumetric-specific
optimizations such as OV and DV. It is important to note that vol-
umetric videos and 360° panoramic videos are different types of
video content. Due to its 3D nature, volumetric video streaming
faces unique challenges compared to 360° videos as detailed earlier
in the paper. Therefore, designing a volumetric video streaming sys-
tem such as ViVo requires far more efforts than simply extending or
modifying existing 360° video streaming systems.

11 CONCLUDING REMARKS
Through ViVo, we demonstrate the feasibility of streaming volu-
metric videos to commodity mobile devices without additional in-
frastructural support such as cloud offloading/acceleration. We also
showcase how visibility awareness helps make volumetric video
streaming bandwidth-efficient. ViVo reveals the synergy among
mobile computing, video streaming, and computer graphics for fa-
cilitating the delivery of emerging volumetric content. We hope our
study will offer insights for follow-up research that further improves
visual quality, resource efficiency, and usability of volumetric video
streaming, as well as motivate novel mobile applications that make
use of volumetric content. We plan to release our volumetric videos
and viewport trajectory datasets to the community.

12 ACKNOWLEDGEMENTS
We appreciate the anonymous reviewers and our shepherd for their
valuable comments. We thank Jarrell Pair for capturing the vol-
umetric videos and Cheuk Yiu Ip for insightful discussions. We
thank the voluntary users who participated in our user study, as well
as Arvind Narayanan for helping with the 5G experiments. Feng
Qian’s research was supported in part by NSF Award #1903880 and
#1915122.

ViVo: Visibility-Aware Mobile Volumetric Video Streaming MobiCom ’20, September 21–25, 2020, London, United Kingdom

REFERENCES
[1] 8i introduces fully volumetric 3D video. https://www.youtube.com/watch?v=

aO3TAke7 MI.
[2] ARM big.LITTLE. https://en.wikipedia.org/wiki/ARM big.LITTLE.
[3] AT&T Continues to Lead in Bringing 5G Experiences to Life. https://

about.att.com/newsroom/2018/5g demo 2018.html.
[4] Create holograms from real life. https://www.microsoft.com/en-us/mixed-reality/

capture-studios.
[5] Draco 3D Data Compression. https://google.github.io/draco/.
[6] Google VR – Fundamental Concepts. https://developers.google.com/vr/discover/

fundamentals.
[7] Google’s ‘Welcome to Light Fields’ VR App Reveals the Power of Volumet-

ric Capture. https://www.roadtovr.com/googles-welcome-to-lightfields-vr-app-
reveals-the-power-of-volumetric-capture/.

[8] How Microsoft records Holographic video content for the HoloLens. https:
//www.youtube.com/watch?v=kZ-XZIV-o8s.

[9] Intel RealSense Technology. https://www.intel.com/content/www/us/en/
architecture-and-technology/realsense-overview.html.

[10] Intel Studios Debut Volumetric Video Demo. https://www.youtube.com/watch?v=
9qd276AJg-o.

[11] Kinect for Windows. https://developer.microsoft.com/en-us/windows/kinect.
[12] Limited Error Point Cloud Compression. https://github.com/Esri/lepcc.
[13] Limited Error Raster Compression. https://github.com/Esri/lerc.
[14] Magic Leap One. https://www.magicleap.com/magic-leap-one.
[15] NFL, Verizon Team Up On 5G Development. https://www.tvtechnology.com/

news/nfl-verizon-team-up-on-5g-development.
[16] Point Cloud Library (PCL). http://pointclouds.org/.
[17] scikit-learn (Machine Learning in Python). https://scikit-learn.org/.
[18] Snapdragon Profiler: A product of Qualcomm Technologies, Inc. https://

developer.qualcomm.com/software/snapdragon-profiler.
[19] View Frustum Culling. http://www.lighthouse3d.com/tutorials/view-frustum-

culling/.
[20] Viewing Frustum Culling. https://en.wikipedia.org/wiki/Hidden-surface

determination#Viewing-frustum culling.
[21] Volumetric video is so much more than VR. https://www.immersiveshooter.com/

2019/01/10/volumetric-video-means-so-much-more-than-vr/.
[22] Volumetric Video Market by Volumetric Capture & Content Creation (Hardware

(Camera & Processing Unit), Software, and Services), Application (Sports & Enter-
tainment, Medical, Signage, Education & Training), and Geography - Global Fore-
cast to 2023. https://www.marketsandmarkets.com/Market-Reports/volumetric-
video-market-259585041.html.

[23] E. Alexiou and T. Ebrahimi. Point Cloud Quality Assessment Metric Based on
Angular Similarity. In Proceedings of IEEE ICME, 2018.

[24] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu. Shooting a moving target:
Motion-prediction-based transmission for 360-degree videos. In Proceedings of
Big Data 2016, 2016.

[25] D. Chen, Y.-J. Chiang, and N. Memon. Lossless Compression of Point-Based 3D
Models. In Proceedings of the 13th Pacific Conference on Computer Graphics
and Applications, 2005.

[26] E. Cuervo, A. Wolman, L. P. Cox, K. Lebeck, A. Razeen, S. Saroiu, and M. Musu-
vathi. Kahawai: High-Quality Mobile Gaming Using GPU Offload. In Proceedings
of ACM MobiSys, 2015.

[27] O. Devillers and P.-M. Gandoin. Geometric Compression for Interactive Trans-
mission. In Proceedings of IEEE Visualization, 2000.

[28] E. Dumic, C. R. Duarte, and L. A. da Silva Cruz. Subjective Evaluation and
Objective Measures for Point Clouds – State of the Art. In Proceedings of
International Colloquium on Smart Grid Metrology, 2018.

[29] J. El-Sana, E. Azanli, and A. Varshney. Skip Strips: Maintaining Triangle Strips
for View-Dependent Rendering. In Proceedings of IEEE Visualization, 1999.

[30] M. Garon, K. Sunkavalli, S. Hadap, N. Carr, and J.-F. Lalonde. Fast Spatially-
Varying Indoor Lighting Estimation. In Proceedings of IEEE CVPR, 2019.

[31] T. Golla and R. Klein. Real-time Point Cloud Compression. In Proceedings of
International Conference on Intelligent Robots and Systems, 2015.

[32] A. Guéziec, G. Taubin, B. Horn, and F. Lazarus. A Framework for Streaming
Geometry in VRML. IEEE Computer Graphics and Applications, 19(2):68–78,
1999.

[33] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han. Rubiks: Practical 360-Degree
Streaming for Smartphones. In Proceedings of ACM MobiSys, 2018.

[34] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computa-
tion, 9(8):1735–1780, 1997.

[35] M. Hosseini and C. Timmerer. Dynamic Adaptive Point Cloud Streaming. In
Proceedings of ACM Packet Video, 2018.

[36] Y. Huang, J. Peng, C.-C. J. Kuo, and M. Gopi. A Generic Scheme for Progressive
Point Cloud Coding. IEEE Trans. on Vis. and Computer Graphics, 14(2):440–453,
2008.

[37] E. Hubo, T. Mertens, T. Haber, and P. Bekaert. The Quantized kd-Tree: Efficient
Ray Tracing of Compressed Point Clouds. In Proceedings of IEEE Symposium on

Interactive Ray Tracing, 2006.
[38] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability in

HTTP-based Adaptive Video Streaming with FESTIVE. In Proceedings of ACM
CoNEXT, 2012.

[39] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and E. Steinbach.
Real-time Compression of Point Cloud Streams. In Proceedings of International
Conference on Robotics and Automation, 2012.

[40] B. Karlik and A. Vehbi. Performance Analysis of Various Activation Functions
in Generalized MLP Architectures of Neural Networks. International Journal of
Artificial Intelligence and Expert Systems, 1(4):111–122, 2010.

[41] S. Katz and A. Tal. On the Visibility of Point Clouds. In Proceedings of IEEE
ICCV, 2015.

[42] S. Katz, A. Tal, and R. Basri. Direct Visibility of Point Sets. In Proceedings of
ACM SIGGRAPH, 2007.

[43] L. Kobbelt and M. Botsch. A Survey of Point-Based Techniques in Computer
Graphics. Computers & Graphics, 28(6):801–814, 2004.

[44] M. Kowalski, J. Naruniec, and M. Daniluk. LiveScan3D: A Fast and Inexpensive
3D Data Acquisition System for Multiple Kinect v2 Sensors. In Proceedings of
International Confeerence on 3D Vision, 2015.

[45] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai. Furion: Engineering High-Quality
Immersive Virtual Reality on Today’s Mobile Devices. In Proceedings of ACM
MobiCom, 2017.

[46] J.-M. Lien, G. Kurillo, and R. Bajcsy. Multi-camera tele-immersion system with
real-time model driven data compression. The Visual Computer, 26(3):3–15, 2010.

[47] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(1–3):503–528, 1989.

[48] L. Liu, R. Zhong, W. Zhang, Y. Liu, J. Zhang, L. Zhang, and M. Gruteser. Cutting
the Cord: Designing a High-quality Untethered VR System with Low Latency
Remote Rendering. In Proceedings of ACM MobiSys, 2018.

[49] A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot. 3D Mesh Compression: Survey,
Comparisons, and Emerging Trends. ACM Computing Surveys, 47(3), 2015.

[50] R. Mehra, P. Tripathi, A. Sheffer, and N. J. Mitra. Visibility of Noisy Point Cloud
Data. Computers and Graphics, 34(3):219–230, 2010.

[51] R. Mekuria, K. Blom, and P. Cesar. Design, Implementation and Evaluation of
a Point Cloud Codec for Tele-Immersive Video. IEEE Trans. on Circuits and
Systems for Video Technology, 27(4):828–842, 2017.

[52] S. Orts-Escolano, C. Rhemann, S. Fanello, W. Chang, A. Kowdle, Y. Degtyarev,
D. Kim, P. Davidson, S. Khamis, M. Dou, V. Tankovich, C. Loop, Q. Cai, P. Chou,
S. Mennicken, J. Valentin, V. Pradeep, S. Wang, S. B. Kang, P. Kohli, Y. Lutchyn,
C. Keskin, and S. Izadi. Holoportation: Virtual 3D Teleportation in Real-time. In
Proceedings of ACM UIST, 2016.

[53] J. Park, P. A. Chou, and J.-N. Hwang. Volumetric Media Streaming for Augmented
Reality. In Proceedings of IEEE GLOBECOM, 2018.

[54] J. Peng, C.-S. Kim, and C.-C. J. Kuo. Technologies for 3D mesh compression: A
survey. Journal of Visual Communication and Image Representation, 16(6):688–
733, 2005.

[55] F. Qian, B. Han, J. Pair, and V. Gopalakrishnan. Toward Practical Volumetric
Video Streaming On Commodity Smartphones. In Proceedings of ACM HotMobile,
2019.

[56] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan. Flare: Practical Viewport-
Adaptive 360-Degree Video Streaming for Mobile Devices. In Proceedings of
ACM MobiCom, 2018.

[57] H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan. Augmented Vehicular
Reality. In Proceedings of ACM MobiSys, 2018.

[58] S. Rusinkiewicz and M. Levoy. QSplat: A Multiresolution Point Rendering System
for Large Meshes. In Proceedings of ACM SIGGRAPH, 2000.

[59] R. Schnabel and R. Klein. Octree-based Point-Cloud Compression. In Proceedings
of the 3rd Eurographics / IEEE VGTC conference on Point-Based Graphics, 2006.

[60] J. L. Schonberger and J.-M. Frahm. Structure-From-Motion Revisited. In Pro-
ceedings of IEEE CVPR, 2016.

[61] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou, R. A.
Cohen, M. Krivokuća, S. Lasserre, Z. Li, J. Llach, K. Mammou, R. Mekuria,
O. Nakagami, E. Siahaan, A. Tabatabai, A. M. Tourapis, and V. Zakharchenko.
Emerging MPEG Standards for Point Cloud Compression. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 9(1):133–148, 2019.

[62] M. Tang, D. Manocha, S.-E. Yoon, P. Du, J.-P. Heo, and R.-F. Tong. VolCCD:
Fast Continuous Collision Culling between Deforming Volume Meshes. ACM
Transactions on Graphics, 30(5):111:1–111:15, 2011.

[63] T.-C. Wang, A. A. Efros, and R. Ramamoorthi. Occlusion-aware Depth Estimation
Using Light-field Cameras. In Proceedings of IEEE ICCV, 2015.

[64] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assess-
ment: From error visibility to structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612, 2004.

[65] A. Woo. Fast Ray-Box Intersection. In Graphics Gems, pages 395–396. Academic
Press, 1990.

https://www.youtube.com/watch?v=aO3TAke7_MI
https://www.youtube.com/watch?v=aO3TAke7_MI
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://about.att.com/newsroom/2018/5g_demo_2018.html
https://about.att.com/newsroom/2018/5g_demo_2018.html
https://www.microsoft.com/en-us/mixed-reality/capture-studios
https://www.microsoft.com/en-us/mixed-reality/capture-studios
https://google.github.io/draco/
https://developers.google.com/vr/discover/fundamentals
https://developers.google.com/vr/discover/fundamentals
https://www.roadtovr.com/googles-welcome-to-lightfields-vr-app-reveals-the-power-of-volumetric-capture/
https://www.roadtovr.com/googles-welcome-to-lightfields-vr-app-reveals-the-power-of-volumetric-capture/
https://www.youtube.com/watch?v=kZ-XZIV-o8s
https://www.youtube.com/watch?v=kZ-XZIV-o8s
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.youtube.com/watch?v=9qd276AJg-o
https://www.youtube.com/watch?v=9qd276AJg-o
https://developer.microsoft.com/en-us/windows/kinect
https://github.com/Esri/lepcc
https://github.com/Esri/lerc
https://www.magicleap.com/magic-leap-one
https://www.tvtechnology.com/news/nfl-verizon-team-up-on-5g-development
https://www.tvtechnology.com/news/nfl-verizon-team-up-on-5g-development
http://pointclouds.org/
https://scikit-learn.org/
https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.qualcomm.com/software/snapdragon-profiler
http://www.lighthouse3d.com/tutorials/view-frustum-culling/
http://www.lighthouse3d.com/tutorials/view-frustum-culling/
https://en.wikipedia.org/wiki/Hidden-surface_determination#Viewing-frustum_culling
https://en.wikipedia.org/wiki/Hidden-surface_determination#Viewing-frustum_culling
https://www.immersiveshooter.com/2019/01/10/volumetric-video-means-so-much-more-than-vr/
https://www.immersiveshooter.com/2019/01/10/volumetric-video-means-so-much-more-than-vr/
https://www.marketsandmarkets.com/Market-Reports/volumetric-video-market-259585041.html
https://www.marketsandmarkets.com/Market-Reports/volumetric-video-market-259585041.html

	Abstract
	1 Introduction
	2 Background on Volumetric Videos
	3 Motivation and Overview
	4 PtCl encoding & Segmentation
	5 Viewport Movement & Prediction
	5.1 Understanding Viewport Movement forVolumetric Videos from Real Users
	5.2 Viewport Prediction (VP)

	6 Visibility-aware Optimizations
	7 System Integration
	8 Performance Evaluation
	8.1 Experimental Setup
	8.2 Effectiveness of Individual Optimizations
	8.3 Effectiveness of Combined Optimizations
	8.4 Comparing Interaction Methods
	8.5 Performance on Commercial 5G Networks
	8.6 ViVo Performance under Limited/ Fluctuating Bandwidth
	8.7 Impact of Cell Size
	8.8 Impact of Multi-threaded Decoding
	8.9 Energy and Resource Utilization

	9 Discussion
	10 Related Work
	11 Concluding Remarks
	12 Acknowledgements
	References

